
Toward Intelligent Generation of Tailored Graphical Concrete
Syntax

Meriem Ben Chaaben*
meriem.ben.chaaben@umontreal.ca

Université de Montréal
Montréal, Canada

Oussama Ben Sghaier*
oussama.ben.sghaier@umontreal.ca

Université de Montréal
Montréal, Canada

Mouna Dhaouadi
mouna.dhaouadi@umontreal.ca

Université de Montréal
Montréal, Canada

Nafisa Elrasheed
nafisa.elrasheed@gmail.com
Polytechnique Montréal

Montréal, Canada

Ikram Darif
ikram.darif.1@ens.etsmtl.ca

École de Technologie Supérieure
Montréal, Canada

Imen Jaoua
imen.jaoua@umontreal.ca
Université de Montréal

Montréal, Canada

Bentley Oakes
bentley.oakes@polymtl.ca
Polytechnique Montréal

Montréal, Canada

Eugene Syriani
syriani@iro.umontreal.ca
Université de Montréal

Montréal, Canada

Mohammad Hamdaqa
mhamdaqa@polymtl.ca
Polytechnique Montréal

Montréal, Canada

ABSTRACT
In model-driven engineering, the concrete syntax of a domain-
specific modeling language (DSML) is fundamental as it constitutes
the primary point of interaction between the user and the DSML.
Nevertheless, the conventional one-size-fits-all approach to con-
crete syntax often undermines the effectiveness of DSMLs, as it
fails to accommodate the diverse constraints and specific require-
ments inherent to diverse users and usage contexts. Such shortcom-
ings can lead to a significant decline in the performance, usability,
and efficiency of DSMLs. This vision paper proposes a conceptual
framework to generate concrete syntax intelligently. Our frame-
work considers multiple concerns of users and aims to align the
concrete syntax with the context of the DSML usage. Additionally,
we detail a baseline process to employ our framework in practice,
leveraging large language models to expedite the generation of tai-
lored concrete syntax. We illustrate the potential of our vision with
two concrete examples and discuss the shortcomings and research
challenges of current intelligent generation techniques.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Specialized application languages; Visual languages; Graphi-
cal user interface languages.

* Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674085

KEYWORDS
Domain-specific Modeling Languages, Concrete Syntax, Artificial
Intelligence, Large Language Models.

ACM Reference Format:
Meriem Ben Chaaben*, Oussama Ben Sghaier*, Mouna Dhaouadi, Nafisa
Elrasheed, Ikram Darif, Imen Jaoua, Bentley Oakes, Eugene Syriani, and Mo-
hammad Hamdaqa. 2024. Toward Intelligent Generation of Tailored Graphi-
cal Concrete Syntax. In ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’24), September 22–27,
2024, Linz, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3640310.3674085

1 INTRODUCTION
Domain-specific modeling languages (DSMLs) are high-level and
specialized languages tailored to a particular application domain [28].
They enable domain experts, who are not necessarily programmers,
to design solutions to problems related to a specific domain, often
leveraging model-driven engineering (MDE) techniques and tools.
As they are closer to the problem domain than general-purpose
programming languages, their custom nature plays an increasingly
important role in multiple areas of software engineering [2, 48].
DSMLs are primarily engineered with an abstract and a concrete
syntax [22], where the abstract syntax describes the conceptual
elements of the language, usually through a metamodel [48]. The
concrete syntax (CS) provides a visual representation (e.g., textual,
graphical, tabular, etc.) of the conceptual elements defined within
the abstract syntax [17].

The CS bridges the semantic gap between abstract models and
their real-world applications by providing the means to express
domain-specific concepts understandably and intuitively. This en-
ables domain experts to interact with models effectively, paving the
way for more efficient and reliable software development. The CS is
also the first contact that domain experts have with the DSML, thus
it plays a crucial role in both the acceptance of the DSML by domain
experts and the definition of notations that meet their expectations.
However, despite the significant impact that the CS has on the

https://doi.org/10.1145/3640310.3674085
https://doi.org/10.1145/3640310.3674085
https://doi.org/10.1145/3640310.3674085

MODELS '24, September 22�27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

Figure 1: Overview of our proposed framework for the intel-
ligent generation of tailored concrete syntax

quality of the DSMLs, current DSML development practices mainly
focus on the abstract syntax and treat the CS as a byproduct [64].

Since CS serves as the primary interface for users, it is crucial to
prioritize clarity, intuitiveness, and e�ciency in its design [39]. The
DSML engineer needs to possess a multitude of artistic, design, user
experience, technical, and prior knowledge skills to create an e�ec-
tive CS, thus creating a signi�cant usage barrier. Moreover, these
challenges are further exacerbated by using mixed or inadequately
adapted notations, which can signi�cantly complicate user inter-
actions. Such inconsistencies in notations can lead to confusion
and reduce the e�ectiveness of the CS in conveying the intended
meaning of the model [42].

The subjective nature of CS introduces additional complexities,
such as user preferences, pro�les, and context variability. Conse-
quently, a one-size-�ts-all approach to CS may prove ine�ective,
as it might not meet all users' diverse needs and preferences, po-
tentially hindering overall e�ectiveness and user experience. How-
ever, creating a customized CS is both time-consuming and labor-
intensive. Thus, there is a need for an automated process for the
creation of tailored CS.

Previous research has attempted to generate CS automatically.
Nastov and P�ster[43] proposed a semi-automated CS generator
using a graphical role election process. Muller et al. [41]proposed to
generate CS from textual templates and UML class diagrams. Other
research tried to customize CS to incorporate di�erent user pro�les,
e.g., to account for the visually-impaired users when manipulating
UML diagrams [35], or when constructing relational diagrams by
proposing an audio interface [38]. To the best of our knowledge,
no previous work has attempted to investigate the possibility of
automatically generating customized CS.

Large Language Models (LLMs) have shown promising potential
in automating di�erent MDE tasks, such as model completion and
metamodel recommenders [9, 11]. In our vision of automatically
generating tailored CS for DSMLs, we investigate if an LLM-based
solution is viable. We focus speci�cally on graphical CS. Our con-
tribution is a conceptual framework designed to intelligently
generate tailored graphical CS . As depicted in Figure 1, the
framework accounts for multiple views, namely the perspective
view, the perception view, and the user view, to take into account
di�erent concerns, including the preferences of the domain experts.
We envision using LLMs to iteratively generate customized graphi-
cal CS based on prompt engineering approaches guided by diverse

feedback signals, including user and tool feedback. Here, tool feed-
back could be quantitative or qualitative measurements of the CS.
We instantiate our vision on two DSMLs: a simple `mind map' lan-
guage and a `tra�c light' language with more complex context
and preferences. The experiments of this paper (i.e., conversations
with ChatGPT and metamodel representations) are provided in the
supplementary material.

The remainder of this paper is structured as follows. Section 2
outlines related works. Section 3 details our proposed framework.
Section 4 elaborates on our baseline framework application process
on a mind-map example. Section 5 discusses the bene�ts, limitations,
and research challenges of our proposed framework based on a
tra�c light DSML. Section 6 concludes with future work.

2 RELATED WORK
This section examines current methodologies for de�ning the graph-
ical CS of DSMLs and discusses their limitations. We also investi-
gate the bene�ts of integrating user constraints to ensure practical
alignment. Lastly, we explore the impact of arti�cial intelligence,
speci�cally LLMs, on DSML development.

2.1 De�ning Graphical Concrete Syntax
DSMLs employ graphical, textual, or mixed syntax to model spe-
ci�c domains. However, current DSML development practices often
prioritize the abstract syntax over the CS [64]. Fondement and
Baar[18] formally specify the graphical representation of language
concepts, extending the abstract syntax metamodel with visual de-
scriptions and emphasizing Object Constraint Language (OCL) for
constraints. Baar[5] introduce a standardized CS format, enabling
diverse model expressions through display manager classes that
bridge the abstract syntax with visual and textual representations.

The graphical CS can be de�ned in several ways: (1) by explicitly
mapping icons and splines to the abstract syntax, as done in tools
like AToMPM [55] and MetaEdit+ [25]; (2) by creating explicit mod-
els that link to metamodel elements and support complex queries,
such as Sirius Viyovi¢ et al. [59]; and (3) by incorporating annota-
tions directly in the metamodel, as in Eugenia Kolovos et al. [27].
In this paper, we adopt the �rst method, explicitly mapping icons
and splines to the abstract syntax elements.

Some approaches focus on the requirements engineering phase
of the DSML development life-cycle. Cho et al. [12] propose that
domain experts specify �rst-class graphical DSML requirements
through graphical notations and generate the metamodel from
it. Pescador and de Lara[44] propose a mind map approach to
illustrate DSML requirements. A central concept symbolizes the
DSML and branches into three key elements: structure, behavior,
and organization. This approach facilitates model creation, detailed
in [1], using �exible transformations from a metamodel design
pattern collection. Van Tendeloo et al. [58] tackles DSML limitations
by explicitly modeling bidirectional mappings between abstract and
CS. This �perceptualization� approach clearly separates the back-
end and front-end of modeling tools and provides �exibility for
supporting multiple front-ends and diverse representations.

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS '24, September 22�27, 2024, Linz, Austria

2.2 Capturing User Constraints
Software requirement speci�cations are crucial for communicating
the stakeholders' needs. They are usually expressed in natural
language. Deeptimahanti and Sanyal[14] use natural language
processing techniques such as parsing, pronoun resolution, and
morphological analysis to bridge the gap between requirement
speci�cations and graphical CS, and streamline the translation of
natural language requirements into UML models for comprehensive
software design.

For the customization of software to meet end-user needs, a
literature review [6] categorized related research into three topics:
end-user development, end-user programming, and end-user soft-
ware engineering. The survey explores techniques like component-
based customization, programming by example, and digital sketch-
ing. While focusing on customization, the survey does not specify
whether the collected research allows intelligently generated CS or
relies solely on manual user speci�cation.

Considering user preferences in software customization is cru-
cial. Li et al. [34]propose using LLMs to capture human preferences
through prompting, active learning, or interactive questions (gener-
ative elicitation). Costa et al. [13] incorporate ontologies to capture
accessibility information, such as the impairment or disability of
users and modi�cations to software or hardware to improve user
interactions [24, 37].

2.3 Generation of Language Aspects
There has been a signi�cant recent shift towards employing AI-
based methodologies to (semi)-automate MDE modeling tasks.

2.3.1 LLMs for language engineeringWeyssow et al. [62] introduce
a deep learning-based approach, trained on numerous metamodels,
to assist in domain concept recommendation during metamodeling.
Other works target model synthesis. For instance, Rahimi et al.
[45] use Generative Adversarial Networks to create realistic model
instances. Yang and Sahraoui[65] process natural language speci�-
cations using machine learning to build complete models.

Prompting strategies play an essential role in guiding the LLMs.
These strategies include: (i) instruction-based prompting that in-
volves giving clear instructions to the learning model [66], (ii) few-
shot prompting that involves guiding the learning model in per-
forming tasks using some examples [52], and (iii) chain of thoughts
prompting that involves guiding an exploration of ideas through a
series of connected or logically sequential questions and prompts
to re�ne the understanding of the learning model [61].

Arulmohan et al. [4] employ prompt engineering through a chain
of prompts by extracting the concepts from natural language speci-
�cations, categorizing them, and then identifying relationships to
synthesize models. Alternatively, Hans-Georg et al. [21] propose to
synthesize models by prompt engineering GPT-4 to generate mod-
els given the speci�cations directly. Chaaben et al. [9] uses few-shot
prompt learning for model completion tasks where the partial model
is provided, and GPT-3 is prompted to suggest related elements.
Furthermore, Tinnes et al. [56] propose �ne-tuning GPT-3 on edit
patterns for models to generate recommendations during the evo-
lution process of the model. In addition to model synthesis, LLMs

have been used to enrich automatic code generation (i.e., model-to-
text transformations) by integrating the textual representation of
the models and constraints directly into the prompt [50].

Overall, most studies employ LLMs for MDE tasks by either (i)
guiding LLMs with speci�c prompts and de�ning desired outputs
or (ii) �ne-tuning the LLMs with a few-shot approach.

2.3.2 Integrating feedback for LLMsIncorporating feedback can
re�ne output as it enhances the accuracy of models and facilitates
the �ne-tuning of the generation process.

End-user feedbackprovides valuable insights into the relevance
of the generated output and its alignment with the users' expecta-
tions and preferences [15, 31]. Deep learning model feedbackderives
from feedback generated by another deep learning model designed
to evaluate speci�c characteristics of the generated output [23]
(e.g., a deep learning model that predicts if a generated metamodel
conforms to requirements). Lastly,tools feedbackencompasses feed-
back from auxiliary tools that evaluate the quality and correctness
of the generated output [40] (e.g., analyzers, linters, and quality
assessment tools).

2.3.3 Input representation for LLMsBesides feedback, the e�ec-
tiveness of LLMs is signi�cantly a�ected by the representation of
the input data. Throughout the literature, some languages and tools
were proposed to represent metamodels that are understandable
by LLMs. PlantUML1 is an open-source tool that allows users to
create diagrams using a simple and intuitive textual language. It
supports various types of diagrams (e.g., UML diagrams), and it
can be understood by LLMs such as ChatGPT [21]. Other works
created DSMLs that are engineered speci�cally for machine learn-
ing pipelines. For instance, Rajaei et al. [46] proposed a DSML for
encoding models into valid input graphs for graph-learning tools.

2.4 Synthesis
In conclusion, the existing literature demonstrates considerable
progress in generating graphical CS using various methodologies.
However, a notable research gap remains in developing customized
CS generation to accommodate user constraints. Most of the works
on concrete syntax engineering focus on textual domain-speci�c
modeling languages, whereas our vision aims to automate graphical
concrete syntax generation. State-of-the-art works often overlook
dimensions like user preferences, which our framework explicitly
incorporates as information sources for LLMs. We target both lan-
guage engineers, who design and customize the concrete syntax,
and modelers, who seek to personalize it. Importantly, our frame-
work does not aim to generate or create the model editor itself
but to create graphical concrete syntax for individual language ele-
ments, assuming existing technical infrastructure for integration.
Additionally, despite the current exploration of LLMs for MDE,
which has demonstrated their e�ectiveness in various modeling
tasks, their application in the speci�c area of CS generation remains
largely unexplored.

3 VIEWS TO TAILOR CONCRETE SYNTAX
This section describes the main contribution of this article: a concep-
tual framework for intelligently generating graphical CS tailored for

1https://plantuml.com/en/

MODELS '24, September 22�27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

a particular usage. Figure 2 depicts an overview of our conceptual
framework. It comprises three main viewpoints, each providing
unique considerations to integrate into the generation process. Note
that specifying all viewpoints and their components is optional.
However, providing more details to the intelligent generator will
likely improve the desired generated output.

Figure 2: The proposed input viewpoints for the generation
of tailored concrete syntax in our framework

We derived these views after a thorough literature analysis, ex-
perience reports of industrial case studies, and our experience in
developing graphical domain-speci�c modeling languages. The
views and subcategories were carefully selected based on estab-
lished principles and standards in the �eld, ensuring a robust and
comprehensive approach to graphical CS generation. Although this
list may not be exhaustive, it outlines important dimensions to con-
sider when engineering the graphical CS of a modeling language.

We detail and illustrate the proposed framework on the `mind
map' example. Recall that the mind map is a visual formalism that
organizes information, ideas, or thoughts around a central concept.
This central concept extends branches to represent related topics
and subtopics, creating a hierarchical structure.

3.1 Prescriptive View
This view focuses on formally de�ning the syntax of the DSML by
establishing essential guidelines and con�gurations that adapt to
the speci�c needs of di�erent situations and users. The language
engineer de�nes this view to provide the necessary context for the
LLM. This view consists mainly of four components. Thecontext
considers theintent of the entire language that de�nes the rationale
behind it and its target users. The DSMLscopedetermines what
concepts are included or excluded from the DSML to restrict the
design space only to elements relevant to this DSML. Astructured
summarydescribing the environment in which the CS will be used
could also be provided. In the mind map DSML, we specify that it
is intended for usage, such as supporting brainstorming activities
during meetings involving several stakeholders.

Themetamodel de�nes the abstract syntax of the language to
specify a model [30]. More speci�cally, it details concepts and their
attributes in adomain vocabulary. Concepts can be related to each
other according toconnectivity rules(e.g., dependency, ontology,
composition). These elements can be furtherconstrainedto form
a coherent structure that the CS shall render. For example, the
metamodel for mind map de�nes concepts such as �Main Topic�,
�Sub Topic�, and �Tag�.

Sometimes, distinct concepts share the same properties, e.g., the
main topic and subtopics should have the same shape. In this case,
one can specify thevariability of concepts [57], through compo-
sition rulesandcon�guration rulesto allow custom arrangements
and customizations to suit di�erent variants of the same concept.
For example, a topic could be represented di�erently if it has zero,
one, or many sub-topics.

Some desired features of theCS may be imposed. One may
enforce a certain representationstyleof the visualizations, such as a
speci�c theme or palette of colors. There may be commonpatterns
for repetitive concepts orcombination rulesof the CS element,
e.g., preserving a certain distance between subtopics.

3.2 Perception View
This view adds improvements to the overall CS speci�cation follow-
ing design principles and aesthetics. It encompasses the common
knowledge that the LLM is either �netuned on or has a knowledge
base that it can access to get relevant design laws.

Graphical language principles for graphical CS, like those
de�ned in [39] ensure that it is appropriate for the DSML users.
In particular,semiotic clarityensures that a CS representation is
assigned to all the metamodel elements provided in the prescrip-
tive view without redundancy. Adjusting the degree ofsemantic
transparencyenables the generation of visualizations that are more
appealing to the user [29]. Visual expressivenessdetermines how to
vary graphical notations along eight visual variables. Overall, the
generated syntax representations should be acognitive �t to the
DSML users to improve their problem-solving performance [20, 51].

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS '24, September 22�27, 2024, Linz, Austria

Graphical user interface principles advocate for a syntax that
is not only functional but also cognitively and visually engaging to
DSML users. For instance, Gestalt principles [63] provide general
guidelines for organizing visual objects, which help gear the vari-
ability in the prescriptive view. Providinguniversalityinformation
helps the generator in choosing symbols that are understood by
the target DSML users. Concerns related to improving the user
interface design to optimize the DSMLuser experiencecan also be
speci�ed [19], e.g., to facilitate the rapid creation of sibling topics
or sub-topics in a mind map.

3.3 User View
This view tailors the CS to user preferences.Individualism prefer-
ences are speci�c to a user who may express theirpersonal prefer-
encesabout, for instance, style and iconography. Users withaccessi-
bility issues can also specify this information to ensure that the CS
is adapted for physical impairments with font size or color choice.
For instance, specifying that the mind map should be adapted to
color-blind users. Thus, the main topic must be distinguishable
from the subtopics in both color and size.

Group identity preferences encompass collective preferences
about theregional conventionsand policies where the typical DSML
users reside�for example, formatting phone numbers and addresses
according to the country or representing trees as evergreen trees
for a DSML targeted for Nordic conditions. When speci�ed, the
generated CS shall also besocio-culturally appropriateto be inclusive
and diverse and avoid a syntax that may o�end individuals. For
example, an icon representing a user may use diverse skin colors
or simply use a stick �gure.

3.4 Positive and Negative Examples
At the con�uence of these viewpoints stands the CS generator, an
essential LLM-based component that integrates inputs from each
viewpoint to create a CS that is both precise in its domain repre-
sentation and customized to user speci�cations (c.f. Figure 1). To
e�ectively guide this generation, instantiatedexamples can be
provided for each element within the proposed framework.Positive
(negative) examples demonstrate similar (un)desired CS characteris-
tics. Anexplanationcan be provided with examples to complement
few-shot learning with a chain of thought.

For instance, sample �gures can be provided, along with an
explanation of how the symbol matches its usage, e.g., �these emoti-
cons should be used as tags in the mind map�. It is also a means
of specifying user preferences, e.g., �I like the styling of this line�.
The generator would then consider this extra information when
outputting the CS.

4 INTELLIGENT GENERATION FRAMEWORK
FOR TAILORED CONCRETE SYNTAX

To systematically identify and illustrate the research gaps towards
our vision, we provide a baseline process to apply our intelligent
generation framework for tailored CS. Following state-of-the-art
techniques in software engineering, we integrate LLMs into our
process. The steps were determined by the authors through exper-
imentation and are grounded in extensive previous research into
applying LLMs to modeling tasks. The application detailed here

makes the intelligent generation tangible, highlights the research
gaps in current methodologies and tools, and serves as a baseline
for future research.

Speci�cally, we propose an iterative process designed to guide
the user's interactions with the LLM within the context of our
framework. Figure 3 outlines the di�erent steps of this process. The
steps annotated with a user are performed outside the LLM-based
generator, while the LLM performs the others. Note that the user
steps can be wholly or partly automated. We designed this process
to be highly iterative, as the LLM is unlikely to provide the desired
output on the �rst attempt. Continuously re�ning the prompts has
also been identi�ed as an e�ective technique for improving the
responses of the model [16].

Table 1 illustrates the proposed process on the mind map ex-
ample using ChatGPT4. We speci�cally chose the learning model
gpt-4-1106-vision-preview as it is a well-known LLM that supports
image generation using the integrated DALL-E [47].

Our baseline process includes two main phases. First, we use the
LLM to generate a textual representation of the CS. Then, we guide
it into translating the generated text into a graphical representation.
We introduce this intermediary textual phase based on insights
from the state-of-practice [36] suggesting that, while LLMs are
highly pro�cient in text generation and comprehension, their direct
graphical representation capabilities can be less reliable, especially
for complex and detail-rich graphics [49]. A key aspect of this
baseline process is the prompt engineering technique. We report on
our strategic formulation and iteration of inputs to elicit the most
relevant and accurate outputs generated by the LLM.

4.1 Step 1: Metamodel Pre-processing
First, the user shall prepare the material to be used as input for the
generation of the CS. Assuming the metamodel of the DSML is al-
ready available, the preprocessing step comprises several activities,
including metamodel slicing and encoding. Slicing the metamodel
allows for separating large metamodels into smaller, more manage-
able ones to avoid lengthy prompts. Furthermore, it enables the
generator to focus on speci�c metamodel elements, which reduces
the complexity of the metamodel and increases its understand-
ability [7]. Slicing can be static, where the slicing operation does
not interpret the model at hand, or dynamic, where parts of the
metamodel are evaluated for the operation.

Encoding the metamodel accurately for processing is critical
in generating tailored CS. This preprocessing step translates the
metamodel into a format that is understandable by the used LLM.
For instance, here we use the PlantUML syntax to convert the mind
map metamodel into a textual format that the LLM understands, as
presented in Listing 1. For the mind map example, since the abstract
syntax metamodel is simple and only includes a few concepts, we
did not need to perform slicing on the metamodel.

4.2 Step 2: Initial Prompt- Prescriptive view
speci�cation

Next, the user provides an initial prompt to the generator (step 2
in Figure 3). The initial prompt speci�es the essential guidelines to
de�ne the CS. They stem from the prescriptive view (Section 3.1),
namely the context, the metamodel (or sub-metamodel if slicing is

MODELS '24, September 22�27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

Figure 3: Baseline process for the intelligent generation of tailored concrete syntax using LLMs

1 @startuml
2 abstract class Topic {
3 String text
4 Tag tag
5 }
6 class MindMap {
7 String name
8 MainTopic mainTopic
9 }

10 class MainTopic extends Topic {
11 List <SubTopic > subTopics
12 }
13 class SubTopic extends Topic {
14 List <SubTopic > subTopics
15 }
16 class Tag {
17 String name
18 }
19 MindMap "1" *--> "1" MainTopic : Contains
20 MainTopic "1" *--> "*" SubTopic : Contains
21 SubTopic "*" *--> "*" SubTopic : Contains
22 Topic "*" --> "1" Tag : Has
23 @enduml

Listing 1: Mind map metamodel in PlantUML syntax

performed), variability, and an initial CS, along with examples, if
possible. The more detailed components are described, the more
accurate the output is.

For instance, in the mind map example shown in Table 1step 2,
the user prompts the LLM by providing the context, speci�cally,

the scope and the metamodel of the mind map in PlantUML. We ex-
plicitly specify that all the metamodel concepts should be included
in the generated CS to describe the scope. We also ask the LLM to
describe each element of the generated CS in natural language. Re-
call that we target an intermediate textual phase within our process
to help the LLM generate a more accurate output.

4.3 Step 3: Generation of Textual GCS Draft
This initial prompt provides the generator with the task. It allows
it to generate a reasonably conceptualized �rst textual draft of the
concepts of the CS (step 3in Figure 3). Step 3 of Table 1 reports the
generated textual output for the mind map example. This output
describes the structure of the mind-map CS by identifying each
concept of the CS along with a description of its graphical represen-
tation. The description de�nes each concept's shape, size, content,
and color and its relationships with other concepts.

4.4 Steps 4 and 5: Representation of GCS in NL
Once the generator outputs a �rst draft, the user can start re�n-
ing their request to tailor the generated textual representation to
their needs and personal preferences by correcting or adding more
speci�cations and constraints (step 4in Figure 3). These speci�ca-
tions/constraints are related to the perception and user views of
our framework (Sections 3.2 and 3.3). Thus, multiple re�nement
rounds can be performed until the user is satis�ed with the textual
description that the LLM provides (steps 4 and 5in Figure 3).

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS '24, September 22�27, 2024, Linz, Austria

Table 1: Excerpt of the conversation with ChatGPT applying the baseline process to the mind map DSML

Step Author Prompt/Output

1 Preprocessing (1) User We use PlantUML to textually represent the mind map metamodel.
2 Initial prompt (2) User Given the below PlantUML metamodel, generate its concrete syntax by assigning

one graphical element for each element of the metamodel. Describe in natural
text the generated concrete syntax. <Mind map metamodel in PlantUML>

3 Initial CS (3) Æ ChatGPT � Main Topic: Represented by a large circle that contains the name of the MindMap at the top
[. . .]

� SubTopic: Illustrated as smaller circles or nodes branching out from the MainTopic or other
SubTopics, each labeled with its text and associated Tag [. . .]

� Tag: Represented by a colored badge or icon placed next to the text of a Topic, with the Tag
name inside.

� Has and Contains connections: Illustrated by lines connecting MindMap to MainTopic and
MainTopic to SubTopics, with arrowheads indicating the direction of the relationship.

4 Feedback (4) User This concrete syntax has few problems as we cannot visually distinguish between
the sub-topic and the main topic. How can we adapt it to overcome these problems?

5 Re�nement (5) Æ ChatGPT � Main Topic - Shape: Represent the Main Topic as a larger circle to emphasize its central role.
Color: Use a distinct color for the Main Topic circle to set it apart from other elements. Text:
Place the text inside the circle, using a bold font to highlight its importance.

� Sub-Topic - Shape: Depict Sub-Topics as smaller circles compared to the Main Topic, indicating
their supportive role. Color: Choose a di�erent color for Sub-Topics to visually separate them
from the Main Topic. Text: The text inside the circle should be in a regular font, distinguishing
it from the Main Topic's bold font. Connection: Draw lines from the Main Topic to each
Sub-Topic to illustrate the hierarchy.

� Tag - Shape: Represent Tags as small rectangles or diamonds to di�erentiate them from topics.
Color: Assign a unique, perhaps lighter or pastel, color pale�e for Tags [...] Text: Include the
tag's text inside the shape, using a smaller font size. Placement: Position the Tag close to its
associated topic, perhaps with a connecting line or visually nested under the topic to show
the association clearly.

6 Request (6) User Given the description of the main topic: <Description> . Generate a graphical
representation of this element.

7 Generation (7) Æ ChatGPT

8 Request (6) User Given the description of the sub-topic: <Description> . Generate a graphical
representation of this element.

9 Generation (7) Æ ChatGPT

10 Request (6) User Given the description of the tag: <Description> . Generate a graphical
representation of this element.

11 Generation (7) Æ ChatGPT

12 Request (6) User Given the description of connections: <Description> . Generate their graphical
representation.

13 Generation (7) Æ ChatGPT

14 Feedback (6) User If we have a large and complex mindmap, tags could be confusing as we might
be not able to know to which topic they are associated. How can we modify the
above representation to overcome this?

MODELS '24, September 22�27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

Table 1 (continued): Excerpt of the conversation with ChatGPT applying the baseline process to the mind map DSML

Step Author Prompt/Output

15 Generation (7) Æ ChatGPT

16 Feedback (6) User Blue and green colors may appear similar for color-blind people. Could you use
other colors that are color-blind-friendly?

17 Generation (7) Æ ChatGPT

18 Feedback (6) User The text of the main topic is unreadable. Can you make it more accessible and
clear?

19 Generation (7) Æ ChatGPT

20 Postprocessing (8) User We ask ChatGPT to encode the generated graphic inSVGformat. It generated the
SVG and also a python script that creates it using matplotlib library.

In our mind map example in Table 1, the user points out the
di�culty of visually distinguishing between the Main Topic and
the Sub-Topic in the initial textual representation. As a response,
the generator proposed an improved CS to solve this problem. The
improved CS explicitly di�erentiates between these two elements
by assigning di�erent sizes, colors, and fonts to each concept.

4.5 Steps 6 and 7: Generation of GCS
Once the user is satis�ed with the textual representation of the
CS, they can start asking the LLM to generate the graphical CS
element by element (step 6in Figure 3). For each generated graphical
representation (step 7in Figure 3), the user can keep re�ning their
request by 1) asking for alternative representations, 2) treating
unsatis�ed speci�cations, 3) pointing out discrepancies between
textual and graphical representations, or 4) providing examples.

For the mind-map example in Table 1, steps 6 through 13 show
the user asking for a graphical representation for each metamodel
concept and the graphical representations generated by ChatGPT.
Steps 14 through 19 present multiple re�nement rounds that the
user suggested to enhance the generated representations.

In this iterative process, the user keeps providing feedback through
re�nement. Thus, the user is assumed to be satis�ed with the �nal
generated syntax. However, when using CS in practice, quantitative
feedback (e.g., usability metrics and error rates) could be used to

re�ne the generated output further. For example, an intelligent gen-
eration framework tightly integrated into a modeling environment
could suggest updates to particular icons if they are often used
erroneously or confused with others.

After the re�nement rounds, if the response of the LLM still
misses speci�c nuances, the user can provide examples in the
prompt (i.e., few-shot learning [60]). This involves providing the
LLM with a small number of carefully selected examples to guide
and stimulate the model's creativity.

4.6 Step 8: Post-processing
Once the user is satis�ed with the generated output, the result
should be post-processed to be integrated into a modeling envi-
ronment. For instance, in our baseline process, the user saves the
icons individually in the desired format and uploads them in their
modeling tool. This step can be automated by integrating the API
calls in the modeling tool.

For the mind map example in Table 1, the user asks the LLM to
write a Python script to export the �nal icons inSVGformat. The
user can then upload these icons in their modeling tool.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Defining Graphical Concrete Syntax
	2.2 Capturing User Constraints
	2.3 Generation of Language Aspects
	2.4 Synthesis

	3 Views to Tailor Concrete Syntax
	3.1 Prescriptive View
	3.2 Perception View
	3.3 User View
	3.4 Positive and Negative Examples

	4 Intelligent Generation Framework for Tailored Concrete Syntax
	4.1 Step 1: Metamodel Pre-processing
	4.2 Step 2: Initial Prompt- Prescriptive view specification
	4.3 Step 3: Generation of Textual GCS Draft
	4.4 Steps 4 and 5: Representation of GCS in NL
	4.5 Steps 6 and 7: Generation of GCS
	4.6 Step 8: Post-processing

	5 Discussion
	5.1 Success for Simple DSMLs
	5.2 Shortcomings for Complex DSMLs
	5.3 Research Challenges

	6 Conclusion
	References

