
Toward Intelligent Generation of Tailored Graphical Concrete
Syntax

Meriem Ben Chaaben*
meriem.ben.chaaben@umontreal.ca

Université de Montréal
Montréal, Canada

Oussama Ben Sghaier*
oussama.ben.sghaier@umontreal.ca

Université de Montréal
Montréal, Canada

Mouna Dhaouadi
mouna.dhaouadi@umontreal.ca

Université de Montréal
Montréal, Canada

Nafisa Elrasheed
nafisa.elrasheed@gmail.com
Polytechnique Montréal

Montréal, Canada

Ikram Darif
ikram.darif.1@ens.etsmtl.ca

École de Technologie Supérieure
Montréal, Canada

Imen Jaoua
imen.jaoua@umontreal.ca
Université de Montréal

Montréal, Canada

Bentley Oakes
bentley.oakes@polymtl.ca
Polytechnique Montréal

Montréal, Canada

Eugene Syriani
syriani@iro.umontreal.ca
Université de Montréal

Montréal, Canada

Mohammad Hamdaqa
mhamdaqa@polymtl.ca
Polytechnique Montréal

Montréal, Canada

ABSTRACT
In model-driven engineering, the concrete syntax of a domain-
specific modeling language (DSML) is fundamental as it constitutes
the primary point of interaction between the user and the DSML.
Nevertheless, the conventional one-size-fits-all approach to con-
crete syntax often undermines the effectiveness of DSMLs, as it
fails to accommodate the diverse constraints and specific require-
ments inherent to diverse users and usage contexts. Such shortcom-
ings can lead to a significant decline in the performance, usability,
and efficiency of DSMLs. This vision paper proposes a conceptual
framework to generate concrete syntax intelligently. Our frame-
work considers multiple concerns of users and aims to align the
concrete syntax with the context of the DSML usage. Additionally,
we detail a baseline process to employ our framework in practice,
leveraging large language models to expedite the generation of tai-
lored concrete syntax. We illustrate the potential of our vision with
two concrete examples and discuss the shortcomings and research
challenges of current intelligent generation techniques.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Specialized application languages; Visual languages; Graphi-
cal user interface languages.

* Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674085

KEYWORDS
Domain-specific Modeling Languages, Concrete Syntax, Artificial
Intelligence, Large Language Models.

ACM Reference Format:
Meriem Ben Chaaben*, Oussama Ben Sghaier*, Mouna Dhaouadi, Nafisa
Elrasheed, Ikram Darif, Imen Jaoua, Bentley Oakes, Eugene Syriani, and Mo-
hammad Hamdaqa. 2024. Toward Intelligent Generation of Tailored Graphi-
cal Concrete Syntax. In ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’24), September 22–27,
2024, Linz, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3640310.3674085

1 INTRODUCTION
Domain-specific modeling languages (DSMLs) are high-level and
specialized languages tailored to a particular application domain [28].
They enable domain experts, who are not necessarily programmers,
to design solutions to problems related to a specific domain, often
leveraging model-driven engineering (MDE) techniques and tools.
As they are closer to the problem domain than general-purpose
programming languages, their custom nature plays an increasingly
important role in multiple areas of software engineering [2, 48].
DSMLs are primarily engineered with an abstract and a concrete
syntax [22], where the abstract syntax describes the conceptual
elements of the language, usually through a metamodel [48]. The
concrete syntax (CS) provides a visual representation (e.g., textual,
graphical, tabular, etc.) of the conceptual elements defined within
the abstract syntax [17].

The CS bridges the semantic gap between abstract models and
their real-world applications by providing the means to express
domain-specific concepts understandably and intuitively. This en-
ables domain experts to interact with models effectively, paving the
way for more efficient and reliable software development. The CS is
also the first contact that domain experts have with the DSML, thus
it plays a crucial role in both the acceptance of the DSML by domain
experts and the definition of notations that meet their expectations.
However, despite the significant impact that the CS has on the

https://doi.org/10.1145/3640310.3674085
https://doi.org/10.1145/3640310.3674085
https://doi.org/10.1145/3640310.3674085

MODELS ’24, September 22–27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

Concrete
syntax

Generator

Concrete
syntax

Feedback

Prompt

Prescriptive view

Perception view Output

User view

Examples

Figure 1: Overview of our proposed framework for the intel-
ligent generation of tailored concrete syntax

quality of the DSMLs, current DSML development practices mainly
focus on the abstract syntax and treat the CS as a byproduct [64].

Since CS serves as the primary interface for users, it is crucial to
prioritize clarity, intuitiveness, and efficiency in its design [39]. The
DSML engineer needs to possess a multitude of artistic, design, user
experience, technical, and prior knowledge skills to create an effec-
tive CS, thus creating a significant usage barrier. Moreover, these
challenges are further exacerbated by using mixed or inadequately
adapted notations, which can significantly complicate user inter-
actions. Such inconsistencies in notations can lead to confusion
and reduce the effectiveness of the CS in conveying the intended
meaning of the model [42].

The subjective nature of CS introduces additional complexities,
such as user preferences, profiles, and context variability. Conse-
quently, a one-size-fits-all approach to CS may prove ineffective,
as it might not meet all users’ diverse needs and preferences, po-
tentially hindering overall effectiveness and user experience. How-
ever, creating a customized CS is both time-consuming and labor-
intensive. Thus, there is a need for an automated process for the
creation of tailored CS.

Previous research has attempted to generate CS automatically.
Nastov and Pfister [43] proposed a semi-automated CS generator
using a graphical role election process. Muller et al. [41] proposed to
generate CS from textual templates and UML class diagrams. Other
research tried to customize CS to incorporate different user profiles,
e.g., to account for the visually-impaired users when manipulating
UML diagrams [35], or when constructing relational diagrams by
proposing an audio interface [38]. To the best of our knowledge,
no previous work has attempted to investigate the possibility of
automatically generating customized CS.

Large Language Models (LLMs) have shown promising potential
in automating different MDE tasks, such as model completion and
metamodel recommenders [9, 11]. In our vision of automatically
generating tailored CS for DSMLs, we investigate if an LLM-based
solution is viable. We focus specifically on graphical CS. Our con-
tribution is a conceptual framework designed to intelligently
generate tailored graphical CS. As depicted in Figure 1, the
framework accounts for multiple views, namely the perspective
view, the perception view, and the user view, to take into account
different concerns, including the preferences of the domain experts.
We envision using LLMs to iteratively generate customized graphi-
cal CS based on prompt engineering approaches guided by diverse

feedback signals, including user and tool feedback. Here, tool feed-
back could be quantitative or qualitative measurements of the CS.
We instantiate our vision on two DSMLs: a simple ‘mind map’ lan-
guage and a ‘traffic light’ language with more complex context
and preferences. The experiments of this paper (i.e., conversations
with ChatGPT and metamodel representations) are provided in the
supplementary material.

The remainder of this paper is structured as follows. Section 2
outlines related works. Section 3 details our proposed framework.
Section 4 elaborates on our baseline framework application process
on amind-map example. Section 5 discusses the benefits, limitations,
and research challenges of our proposed framework based on a
traffic light DSML. Section 6 concludes with future work.

2 RELATEDWORK
This section examines current methodologies for defining the graph-
ical CS of DSMLs and discusses their limitations. We also investi-
gate the benefits of integrating user constraints to ensure practical
alignment. Lastly, we explore the impact of artificial intelligence,
specifically LLMs, on DSML development.

2.1 Defining Graphical Concrete Syntax
DSMLs employ graphical, textual, or mixed syntax to model spe-
cific domains. However, current DSML development practices often
prioritize the abstract syntax over the CS [64]. Fondement and
Baar [18] formally specify the graphical representation of language
concepts, extending the abstract syntax metamodel with visual de-
scriptions and emphasizing Object Constraint Language (OCL) for
constraints. Baar [5] introduce a standardized CS format, enabling
diverse model expressions through display manager classes that
bridge the abstract syntax with visual and textual representations.

The graphical CS can be defined in several ways: (1) by explicitly
mapping icons and splines to the abstract syntax, as done in tools
like AToMPM [55] and MetaEdit+ [25]; (2) by creating explicit mod-
els that link to metamodel elements and support complex queries,
such as Sirius Viyović et al. [59]; and (3) by incorporating annota-
tions directly in the metamodel, as in Eugenia Kolovos et al. [27].
In this paper, we adopt the first method, explicitly mapping icons
and splines to the abstract syntax elements.

Some approaches focus on the requirements engineering phase
of the DSML development life-cycle. Cho et al. [12] propose that
domain experts specify first-class graphical DSML requirements
through graphical notations and generate the metamodel from
it. Pescador and de Lara [44] propose a mind map approach to
illustrate DSML requirements. A central concept symbolizes the
DSML and branches into three key elements: structure, behavior,
and organization. This approach facilitates model creation, detailed
in [1], using flexible transformations from a metamodel design
pattern collection. Van Tendeloo et al. [58] tackles DSML limitations
by explicitly modeling bidirectional mappings between abstract and
CS. This “perceptualization” approach clearly separates the back-
end and front-end of modeling tools and provides flexibility for
supporting multiple front-ends and diverse representations.

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS ’24, September 22–27, 2024, Linz, Austria

2.2 Capturing User Constraints
Software requirement specifications are crucial for communicating
the stakeholders’ needs. They are usually expressed in natural
language. Deeptimahanti and Sanyal [14] use natural language
processing techniques such as parsing, pronoun resolution, and
morphological analysis to bridge the gap between requirement
specifications and graphical CS, and streamline the translation of
natural language requirements into UMLmodels for comprehensive
software design.

For the customization of software to meet end-user needs, a
literature review [6] categorized related research into three topics:
end-user development, end-user programming, and end-user soft-
ware engineering. The survey explores techniques like component-
based customization, programming by example, and digital sketch-
ing. While focusing on customization, the survey does not specify
whether the collected research allows intelligently generated CS or
relies solely on manual user specification.

Considering user preferences in software customization is cru-
cial. Li et al. [34] propose using LLMs to capture human preferences
through prompting, active learning, or interactive questions (gener-
ative elicitation). Costa et al. [13] incorporate ontologies to capture
accessibility information, such as the impairment or disability of
users and modifications to software or hardware to improve user
interactions [24, 37].

2.3 Generation of Language Aspects
There has been a significant recent shift towards employing AI-
based methodologies to (semi)-automate MDE modeling tasks.

2.3.1 LLMs for language engineering Weyssow et al. [62] introduce
a deep learning-based approach, trained on numerous metamodels,
to assist in domain concept recommendation during metamodeling.
Other works target model synthesis. For instance, Rahimi et al.
[45] use Generative Adversarial Networks to create realistic model
instances. Yang and Sahraoui [65] process natural language specifi-
cations using machine learning to build complete models.

Prompting strategies play an essential role in guiding the LLMs.
These strategies include: (i) instruction-based prompting that in-
volves giving clear instructions to the learning model [66], (ii) few-
shot prompting that involves guiding the learning model in per-
forming tasks using some examples [52], and (iii) chain of thoughts
prompting that involves guiding an exploration of ideas through a
series of connected or logically sequential questions and prompts
to refine the understanding of the learning model [61].

Arulmohan et al. [4] employ prompt engineering through a chain
of prompts by extracting the concepts from natural language speci-
fications, categorizing them, and then identifying relationships to
synthesize models. Alternatively, Hans-Georg et al. [21] propose to
synthesize models by prompt engineering GPT-4 to generate mod-
els given the specifications directly. Chaaben et al. [9] uses few-shot
prompt learning formodel completion taskswhere the partial model
is provided, and GPT-3 is prompted to suggest related elements.
Furthermore, Tinnes et al. [56] propose fine-tuning GPT-3 on edit
patterns for models to generate recommendations during the evo-
lution process of the model. In addition to model synthesis, LLMs

have been used to enrich automatic code generation (i.e., model-to-
text transformations) by integrating the textual representation of
the models and constraints directly into the prompt [50].

Overall, most studies employ LLMs for MDE tasks by either (i)
guiding LLMs with specific prompts and defining desired outputs
or (ii) fine-tuning the LLMs with a few-shot approach.

2.3.2 Integrating feedback for LLMs Incorporating feedback can
refine output as it enhances the accuracy of models and facilitates
the fine-tuning of the generation process.

End-user feedback provides valuable insights into the relevance
of the generated output and its alignment with the users’ expecta-
tions and preferences [15, 31]. Deep learning model feedback derives
from feedback generated by another deep learning model designed
to evaluate specific characteristics of the generated output [23]
(e.g., a deep learning model that predicts if a generated metamodel
conforms to requirements). Lastly, tools feedback encompasses feed-
back from auxiliary tools that evaluate the quality and correctness
of the generated output [40] (e.g., analyzers, linters, and quality
assessment tools).

2.3.3 Input representation for LLMs Besides feedback, the effec-
tiveness of LLMs is significantly affected by the representation of
the input data. Throughout the literature, some languages and tools
were proposed to represent metamodels that are understandable
by LLMs. PlantUML1 is an open-source tool that allows users to
create diagrams using a simple and intuitive textual language. It
supports various types of diagrams (e.g., UML diagrams), and it
can be understood by LLMs such as ChatGPT [21]. Other works
created DSMLs that are engineered specifically for machine learn-
ing pipelines. For instance, Rajaei et al. [46] proposed a DSML for
encoding models into valid input graphs for graph-learning tools.

2.4 Synthesis
In conclusion, the existing literature demonstrates considerable
progress in generating graphical CS using various methodologies.
However, a notable research gap remains in developing customized
CS generation to accommodate user constraints. Most of the works
on concrete syntax engineering focus on textual domain-specific
modeling languages, whereas our vision aims to automate graphical
concrete syntax generation. State-of-the-art works often overlook
dimensions like user preferences, which our framework explicitly
incorporates as information sources for LLMs. We target both lan-
guage engineers, who design and customize the concrete syntax,
and modelers, who seek to personalize it. Importantly, our frame-
work does not aim to generate or create the model editor itself
but to create graphical concrete syntax for individual language ele-
ments, assuming existing technical infrastructure for integration.
Additionally, despite the current exploration of LLMs for MDE,
which has demonstrated their effectiveness in various modeling
tasks, their application in the specific area of CS generation remains
largely unexplored.

3 VIEWS TO TAILOR CONCRETE SYNTAX
This section describes themain contribution of this article: a concep-
tual framework for intelligently generating graphical CS tailored for
1https://plantuml.com/en/

https://plantuml.com/en/

MODELS ’24, September 22–27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

a particular usage. Figure 2 depicts an overview of our conceptual
framework. It comprises three main viewpoints, each providing
unique considerations to integrate into the generation process. Note
that specifying all viewpoints and their components is optional.
However, providing more details to the intelligent generator will
likely improve the desired generated output.

 Concrete
 syntax
 views

 Prescriptive
 view

 Context

 Intent

 Scope

 Structured
 summary

 Metamodel

 Domain
 vocabulary

 Connectivity
 rules

 Constraints

 Variability

 Composition
 rules

 Configuration
rules

 Concrete syntax

 Style

 Pattern

 Combination
 rules

 Perception
 view

 Graphical language
 principles

 Semiotic clarity

 Semantics
 transparency

 Visual
 expressiveness

 Cognitive fit

 Graphical user
 interface aesthetics

 Gestalt principles

 Universality

 User experience

 User view

 Individualism

 Accessibility

 Personal
 preferences

 Group identity

 Socio-cultural
 appropiateness

 Regional
 conventions

 Examples

 Positive

 Negative

 Explanation

Figure 2: The proposed input viewpoints for the generation
of tailored concrete syntax in our framework

We derived these views after a thorough literature analysis, ex-
perience reports of industrial case studies, and our experience in
developing graphical domain-specific modeling languages. The
views and subcategories were carefully selected based on estab-
lished principles and standards in the field, ensuring a robust and
comprehensive approach to graphical CS generation. Although this
list may not be exhaustive, it outlines important dimensions to con-
sider when engineering the graphical CS of a modeling language.

We detail and illustrate the proposed framework on the ‘mind
map’ example. Recall that the mind map is a visual formalism that
organizes information, ideas, or thoughts around a central concept.
This central concept extends branches to represent related topics
and subtopics, creating a hierarchical structure.

3.1 Prescriptive View
This view focuses on formally defining the syntax of the DSML by
establishing essential guidelines and configurations that adapt to
the specific needs of different situations and users. The language
engineer defines this view to provide the necessary context for the
LLM. This view consists mainly of four components. The context
considers the intent of the entire language that defines the rationale
behind it and its target users. The DSML scope determines what
concepts are included or excluded from the DSML to restrict the
design space only to elements relevant to this DSML. A structured
summary describing the environment in which the CS will be used
could also be provided. In the mind map DSML, we specify that it
is intended for usage, such as supporting brainstorming activities
during meetings involving several stakeholders.

Themetamodel defines the abstract syntax of the language to
specify a model [30]. More specifically, it details concepts and their
attributes in a domain vocabulary. Concepts can be related to each
other according to connectivity rules (e.g., dependency, ontology,
composition). These elements can be further constrained to form
a coherent structure that the CS shall render. For example, the
metamodel for mind map defines concepts such as “Main Topic”,
“Sub Topic”, and “Tag”.

Sometimes, distinct concepts share the same properties, e.g., the
main topic and subtopics should have the same shape. In this case,
one can specify the variability of concepts [57], through compo-
sition rules and configuration rules to allow custom arrangements
and customizations to suit different variants of the same concept.
For example, a topic could be represented differently if it has zero,
one, or many sub-topics.

Some desired features of the CS may be imposed. One may
enforce a certain representation style of the visualizations, such as a
specific theme or palette of colors. There may be common patterns
for repetitive concepts or combination rules of the CS element,
e.g., preserving a certain distance between subtopics.

3.2 Perception View
This view adds improvements to the overall CS specification follow-
ing design principles and aesthetics. It encompasses the common
knowledge that the LLM is either finetuned on or has a knowledge
base that it can access to get relevant design laws.

Graphical language principles for graphical CS, like those
defined in [39] ensure that it is appropriate for the DSML users.
In particular, semiotic clarity ensures that a CS representation is
assigned to all the metamodel elements provided in the prescrip-
tive view without redundancy. Adjusting the degree of semantic
transparency enables the generation of visualizations that are more
appealing to the user [29]. Visual expressiveness determines how to
vary graphical notations along eight visual variables. Overall, the
generated syntax representations should be a cognitive fit to the
DSML users to improve their problem-solving performance [20, 51].

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS ’24, September 22–27, 2024, Linz, Austria

Graphical user interface principles advocate for a syntax that
is not only functional but also cognitively and visually engaging to
DSML users. For instance, Gestalt principles [63] provide general
guidelines for organizing visual objects, which help gear the vari-
ability in the prescriptive view. Providing universality information
helps the generator in choosing symbols that are understood by
the target DSML users. Concerns related to improving the user
interface design to optimize the DSML user experience can also be
specified [19], e.g., to facilitate the rapid creation of sibling topics
or sub-topics in a mind map.

3.3 User View
This view tailors the CS to user preferences. Individualism prefer-
ences are specific to a user who may express their personal prefer-
ences about, for instance, style and iconography. Users with accessi-
bility issues can also specify this information to ensure that the CS
is adapted for physical impairments with font size or color choice.
For instance, specifying that the mind map should be adapted to
color-blind users. Thus, the main topic must be distinguishable
from the subtopics in both color and size.

Group identity preferences encompass collective preferences
about the regional conventions and policies where the typical DSML
users reside—for example, formatting phone numbers and addresses
according to the country or representing trees as evergreen trees
for a DSML targeted for Nordic conditions. When specified, the
generated CS shall also be socio-culturally appropriate to be inclusive
and diverse and avoid a syntax that may offend individuals. For
example, an icon representing a user may use diverse skin colors
or simply use a stick figure.

3.4 Positive and Negative Examples
At the confluence of these viewpoints stands the CS generator, an
essential LLM-based component that integrates inputs from each
viewpoint to create a CS that is both precise in its domain repre-
sentation and customized to user specifications (c.f. Figure 1). To
effectively guide this generation, instantiated examples can be
provided for each element within the proposed framework. Positive
(negative) examples demonstrate similar (un)desired CS characteris-
tics. An explanation can be provided with examples to complement
few-shot learning with a chain of thought.

For instance, sample figures can be provided, along with an
explanation of how the symbol matches its usage, e.g., “these emoti-
cons should be used as tags in the mind map”. It is also a means
of specifying user preferences, e.g., “I like the styling of this line”.
The generator would then consider this extra information when
outputting the CS.

4 INTELLIGENT GENERATION FRAMEWORK
FOR TAILORED CONCRETE SYNTAX

To systematically identify and illustrate the research gaps towards
our vision, we provide a baseline process to apply our intelligent
generation framework for tailored CS. Following state-of-the-art
techniques in software engineering, we integrate LLMs into our
process. The steps were determined by the authors through exper-
imentation and are grounded in extensive previous research into
applying LLMs to modeling tasks. The application detailed here

makes the intelligent generation tangible, highlights the research
gaps in current methodologies and tools, and serves as a baseline
for future research.

Specifically, we propose an iterative process designed to guide
the user’s interactions with the LLM within the context of our
framework. Figure 3 outlines the different steps of this process. The
steps annotated with a user are performed outside the LLM-based
generator, while the LLM performs the others. Note that the user
steps can be wholly or partly automated. We designed this process
to be highly iterative, as the LLM is unlikely to provide the desired
output on the first attempt. Continuously refining the prompts has
also been identified as an effective technique for improving the
responses of the model [16].

Table 1 illustrates the proposed process on the mind map ex-
ample using ChatGPT4. We specifically chose the learning model
gpt-4-1106-vision-preview as it is a well-known LLM that supports
image generation using the integrated DALL-E [47].

Our baseline process includes two main phases. First, we use the
LLM to generate a textual representation of the CS. Then, we guide
it into translating the generated text into a graphical representation.
We introduce this intermediary textual phase based on insights
from the state-of-practice [36] suggesting that, while LLMs are
highly proficient in text generation and comprehension, their direct
graphical representation capabilities can be less reliable, especially
for complex and detail-rich graphics [49]. A key aspect of this
baseline process is the prompt engineering technique. We report on
our strategic formulation and iteration of inputs to elicit the most
relevant and accurate outputs generated by the LLM.

4.1 Step 1: Metamodel Pre-processing
First, the user shall prepare the material to be used as input for the
generation of the CS. Assuming the metamodel of the DSML is al-
ready available, the preprocessing step comprises several activities,
including metamodel slicing and encoding. Slicing the metamodel
allows for separating large metamodels into smaller, more manage-
able ones to avoid lengthy prompts. Furthermore, it enables the
generator to focus on specific metamodel elements, which reduces
the complexity of the metamodel and increases its understand-
ability [7]. Slicing can be static, where the slicing operation does
not interpret the model at hand, or dynamic, where parts of the
metamodel are evaluated for the operation.

Encoding the metamodel accurately for processing is critical
in generating tailored CS. This preprocessing step translates the
metamodel into a format that is understandable by the used LLM.
For instance, here we use the PlantUML syntax to convert the mind
map metamodel into a textual format that the LLM understands, as
presented in Listing 1. For the mind map example, since the abstract
syntax metamodel is simple and only includes a few concepts, we
did not need to perform slicing on the metamodel.

4.2 Step 2: Initial Prompt- Prescriptive view
specification

Next, the user provides an initial prompt to the generator (step 2
in Figure 3). The initial prompt specifies the essential guidelines to
define the CS. They stem from the prescriptive view (Section 3.1),
namely the context, the metamodel (or sub-metamodel if slicing is

MODELS ’24, September 22–27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

Prescriptive view
specification

Requests and feedback
on textual GCS GCS refinement

Element-wise generation
of GCS

Requests and feedback
on GCS

Generation of GCS

Representation of GCS in NL

4 5

7

6

Context comprehension
and generation of initial

textual GCS
3

2

- Context
- Metamodel
- Initial concrete syntax
- Examples

 Prescriptive view

- Missing, incorrect, additional specifications
- Missing, incorrect, additional constraints

Perception / User views

- Better/alternative representations
- Unsatisfied specifications
- Discrepancy between textual and
graphical CS
- Examples

Initial representation
of GCS in NL

Representation of
GCS in NL

Graphical
representation of CS

Data flow

Control flow

User

LLM

Legend

Metamodel
preprocessing

1

Post processing of GCS

8

Figure 3: Baseline process for the intelligent generation of tailored concrete syntax using LLMs

1 @startuml

2 abstract class Topic {

3 String text

4 Tag tag

5 }

6 class MindMap {

7 String name

8 MainTopic mainTopic

9 }

10 class MainTopic extends Topic {

11 List <SubTopic > subTopics

12 }

13 class SubTopic extends Topic {

14 List <SubTopic > subTopics

15 }

16 class Tag {

17 String name

18 }

19 MindMap "1" *--> "1" MainTopic : Contains

20 MainTopic "1" *--> "*" SubTopic : Contains

21 SubTopic "*" *--> "*" SubTopic : Contains

22 Topic "*" --> "1" Tag : Has

23 @enduml

Listing 1: Mind map metamodel in PlantUML syntax

performed), variability, and an initial CS, along with examples, if
possible. The more detailed components are described, the more
accurate the output is.

For instance, in the mind map example shown in Table 1 step 2,
the user prompts the LLM by providing the context, specifically,

the scope and the metamodel of the mind map in PlantUML. We ex-
plicitly specify that all the metamodel concepts should be included
in the generated CS to describe the scope. We also ask the LLM to
describe each element of the generated CS in natural language. Re-
call that we target an intermediate textual phase within our process
to help the LLM generate a more accurate output.

4.3 Step 3: Generation of Textual GCS Draft
This initial prompt provides the generator with the task. It allows
it to generate a reasonably conceptualized first textual draft of the
concepts of the CS (step 3 in Figure 3). Step 3 of Table 1 reports the
generated textual output for the mind map example. This output
describes the structure of the mind-map CS by identifying each
concept of the CS along with a description of its graphical represen-
tation. The description defines each concept’s shape, size, content,
and color and its relationships with other concepts.

4.4 Steps 4 and 5: Representation of GCS in NL
Once the generator outputs a first draft, the user can start refin-
ing their request to tailor the generated textual representation to
their needs and personal preferences by correcting or adding more
specifications and constraints (step 4 in Figure 3). These specifica-
tions/constraints are related to the perception and user views of
our framework (Sections 3.2 and 3.3). Thus, multiple refinement
rounds can be performed until the user is satisfied with the textual
description that the LLM provides (steps 4 and 5 in Figure 3).

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS ’24, September 22–27, 2024, Linz, Austria

Table 1: Excerpt of the conversation with ChatGPT applying the baseline process to the mind map DSML

Step Author Prompt/Output

1 Preprocessing (1) User We use PlantUML to textually represent the mind map metamodel.

2 Initial prompt (2) User Given the below PlantUML metamodel, generate its concrete syntax by assigning
one graphical element for each element of the metamodel. Describe in natural
text the generated concrete syntax. <Mind map metamodel in PlantUML>

3 Initial CS (3) Æ ChatGPT • Main Topic: Represented by a large circle that contains the name of the MindMap at the top
[. . .]

• SubTopic: Illustrated as smaller circles or nodes branching out from the MainTopic or other
SubTopics, each labeled with its text and associated Tag [. . .]

• Tag: Represented by a colored badge or icon placed next to the text of a Topic, with the Tag
name inside.

• Has and Contains connections: Illustrated by lines connecting MindMap to MainTopic and
MainTopic to SubTopics, with arrowheads indicating the direction of the relationship.

4 Feedback (4) User This concrete syntax has few problems as we cannot visually distinguish between
the sub-topic and the main topic. How can we adapt it to overcome these problems?

5 Refinement (5) Æ ChatGPT • Main Topic - Shape: Represent the Main Topic as a larger circle to emphasize its central role.
Color: Use a distinct color for the Main Topic circle to set it apart from other elements. Text:
Place the text inside the circle, using a bold font to highlight its importance.

• Sub-Topic - Shape: Depict Sub-Topics as smaller circles compared to the Main Topic, indicating
their supportive role. Color: Choose a different color for Sub-Topics to visually separate them
from the Main Topic. Text: The text inside the circle should be in a regular font, distinguishing
it from the Main Topic’s bold font. Connection: Draw lines from the Main Topic to each
Sub-Topic to illustrate the hierarchy.

• Tag - Shape: Represent Tags as small rectangles or diamonds to differentiate them from topics.
Color: Assign a unique, perhaps lighter or pastel, color palette for Tags [...] Text: Include the
tag’s text inside the shape, using a smaller font size. Placement: Position the Tag close to its
associated topic, perhaps with a connecting line or visually nested under the topic to show
the association clearly.

6 Request (6) User Given the description of the main topic: <Description>. Generate a graphical
representation of this element.

7 Generation (7) Æ ChatGPT

8 Request (6) User Given the description of the sub-topic: <Description>. Generate a graphical
representation of this element.

9 Generation (7) Æ ChatGPT

10 Request (6) User Given the description of the tag: <Description>. Generate a graphical
representation of this element.

11 Generation (7) Æ ChatGPT
12 Request (6) User Given the description of connections: <Description>. Generate their graphical

representation.

13 Generation (7) Æ ChatGPT

14 Feedback (6) User If we have a large and complex mindmap, tags could be confusing as we might
be not able to know to which topic they are associated. How can we modify the
above representation to overcome this?

MODELS ’24, September 22–27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

Table 1 (continued): Excerpt of the conversation with ChatGPT applying the baseline process to the mind map DSML

Step Author Prompt/Output

15 Generation (7) Æ ChatGPT

16 Feedback (6) User Blue and green colors may appear similar for color-blind people. Could you use
other colors that are color-blind-friendly?

17 Generation (7) Æ ChatGPT

18 Feedback (6) User The text of the main topic is unreadable. Can you make it more accessible and
clear?

19 Generation (7) Æ ChatGPT

20 Postprocessing (8) User We ask ChatGPT to encode the generated graphic in SVG format. It generated the
SVG and also a python script that creates it using matplotlib library.

In our mind map example in Table 1, the user points out the
difficulty of visually distinguishing between the Main Topic and
the Sub-Topic in the initial textual representation. As a response,
the generator proposed an improved CS to solve this problem. The
improved CS explicitly differentiates between these two elements
by assigning different sizes, colors, and fonts to each concept.

4.5 Steps 6 and 7: Generation of GCS
Once the user is satisfied with the textual representation of the
CS, they can start asking the LLM to generate the graphical CS
element by element (step 6 in Figure 3). For each generated graphical
representation (step 7 in Figure 3), the user can keep refining their
request by 1) asking for alternative representations, 2) treating
unsatisfied specifications, 3) pointing out discrepancies between
textual and graphical representations, or 4) providing examples.

For the mind-map example in Table 1, steps 6 through 13 show
the user asking for a graphical representation for each metamodel
concept and the graphical representations generated by ChatGPT.
Steps 14 through 19 present multiple refinement rounds that the
user suggested to enhance the generated representations.

In this iterative process, the user keeps providing feedback through
refinement. Thus, the user is assumed to be satisfied with the final
generated syntax. However, when using CS in practice, quantitative
feedback (e.g., usability metrics and error rates) could be used to

refine the generated output further. For example, an intelligent gen-
eration framework tightly integrated into a modeling environment
could suggest updates to particular icons if they are often used
erroneously or confused with others.

After the refinement rounds, if the response of the LLM still
misses specific nuances, the user can provide examples in the
prompt (i.e., few-shot learning [60]). This involves providing the
LLM with a small number of carefully selected examples to guide
and stimulate the model’s creativity.

4.6 Step 8: Post-processing
Once the user is satisfied with the generated output, the result
should be post-processed to be integrated into a modeling envi-
ronment. For instance, in our baseline process, the user saves the
icons individually in the desired format and uploads them in their
modeling tool. This step can be automated by integrating the API
calls in the modeling tool.

For the mind map example in Table 1, the user asks the LLM to
write a Python script to export the final icons in SVG format. The
user can then upload these icons in their modeling tool.

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS ’24, September 22–27, 2024, Linz, Austria

5 DISCUSSION
This section discusses applying the baseline process to the mind-
map example to illustrate the approach’s benefits. We then investi-
gate limitations and research challenges discovered when applying
this process to a more complex DSML of traffic lights.

5.1 Success for Simple DSMLs
As shown in Section 4, applying the baseline process using LLMs
to a simple domain-specific language, i.e., mind-map, works rea-
sonably well. This suggests that our approach can generate CS
for straightforward small-sized applications that incorporate basic
user preferences and accommodate specific needs like customizing
various aspects such as font size, node shapes, and line styles.

We discovered that the key to a successful generation is ensuring
the context is well understood to ensure that the generated CS is
semantically rich and aligned with the specific challenges and ob-
jectives of its intended use case. Our preliminary exploration found
that a detailed and precise initial prompt and iterative refinement
steps based on user feedback form the cornerstone of effectively
leveraging LLMs for DSML development. This process can allow
for the customization of syntax to meet functional requirements
and enhance the user experience through considerations of acces-
sibility and personalization. However, several feedback iterations
were needed to achieve the desired CS.

5.2 Shortcomings for Complex DSMLs
Despite the promising initial results, our exploration into the in-
telligent generation of tailored CS also highlighted several gaps
and challenges. We encountered various limitations and challenges,
which were particularly evident when applying our framework to
the example of traffic light for individuals with color blindness.
In this example, we aimed to model the structure and behavior of
traffic signals at an intersection, involving the lights, timing for
changes, and modes for emergency vehicles. This DSML requires
adaptations to ensure that individuals with color vision deficiencies
can accurately interpret and respond to traffic signals, thus enhanc-
ing both safety and accessibility. We chose this example to test our
baseline process on a more sophisticated scenario, intending to
identify key areas for future focus in generating tailored CS.

5.2.1 Process application to traffic light Following the iterative
approach outlined earlier, we first focus on the comprehension
of the context of our system by LLMs, specifically ChatGPT4, by
providing the metamodel in PlantUML. This metamodel defines
concepts like the state of the lights, modes, etc. Additionally, we
articulate the need to accommodate individuals with color vision
deficiencies in natural language, setting the stage for a tailored CS
generation. Once we achieve the textual generation and obtain the
desired description for the traffic light CS along with details about
each element, we move to graphical generation. We explore two
distinct approaches: generating the entire CS at once and generating
the CS for language segments.

5.2.2 Attempt 1: Entire concrete syntax generation Initially, we
tasked the generator with producing the graphical CS in a sin-
gle comprehensive attempt, which produced graphical symbols for

Figure 4: Attempt 1: Result of producing the entire graphical
concrete syntax in one step.

(a) Step i- Results of the
prompt: “Given the descrip-
tion of light elements, gener-
ate a graphical representation
for these elements.”

(b) Step i+1- Results of the
prompt: “Given the descrip-
tion of behavior elements, gen-
erate a graphical representa-
tion for these elements.”

Figure 5: Attempt 2: Different outputs of iterative steps of
traffic light system’s tailored concrete syntax.

every element. Through this attempt, wewanted to evaluate the gen-
erator’s capacity to integrate multiple aspects of our framework—
such as color adaptations for color vision deficiencies and symbolic
representation—into a cohesive visual output.

The final output of this attempt is depicted in Figure 4. The
obtained CS offers some insightful directions, but it certainly does
not meet our expectations. The image generation process cannot
focus on each graphical element in turn. Instead, it generates an
unusable mix of unlabelled elements that cannot be divided up into
individual icons.

5.2.3 Attempt 2: Segmented concrete syntax generation In the sec-
ond attempt, we segmented the process similar to the mind map
example in Section 4. We instructed the generator to focus on each

MODELS ’24, September 22–27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

conceptual element separately, ensuring each was clearly defined
and accessible. Figure 5a presents the results where we specifically
request graphical representations focusing solely on the light el-
ements. The obtained results are confusing and not explanatory.
Figure 5b presents the results where we ask ChatGPT4 to generate
from the description of the behavioral traffic light elements. The
output fell short of our expectations, although we focused on a few
metamodel elements.

5.2.4 Concerns with iterative feedback loops A key concern with
the feedback loop in the iterative process of metamodel refinement
is determining when to terminate interactions with the human
user. The iterations conclude when the metamodel is fully covered,
and the specifications are satisfied, but the number of iterations re-
quired is inherently uncertain. It is a fuzzy problem that depends on
various factors, including context, scope, variability, problem com-
plexity, the results generated by the LLM, and the user’s subjective
preferences. However, we expect that the LLM-human interactions
will progressively improve the output. By incorporating additional
context information (e.g., feedback, domain knowledge, and sym-
bolic reasoning), the LLM can be guided toward improved solutions.
As generative AI techniques continue to evolve, we expect a re-
duction in the number of iterations needed, ideally achieving the
ultimate goal of generating graphical CS in a single iteration based
on the entire specification. Based on our experiments, the number
of iterations varied significantly. The mind-map case required three
to five iterations (request/generation) due to its simpler structure,
semantics, and fewer elements. For a complex example (i.e., traffic
light), seven to ten iterations were necessary due to its greater com-
plexity, involving more intricate behaviors, detailed interactions,
and rich semantics. Thus, more complex scenarios require more
iterations to achieve satisfactory results.

5.3 Research Challenges
The inconsistency of the obtained results across the two explored
case studies, i.e., mind map and traffic light languages, highlights
that the effectiveness of our suggested process can vary significantly
with the DSML’s complexity. This motivates the following research
challenges in generating tailored CS for more intricate systems.

Specifically, we identify some research challenges we foresee in
creating and implementing an intelligent CS generation framework.
These challenges were a) identified and collected by the authors
while performing the baseline process on these two DSML examples
and b) discussed and organized by all authors.

RC1: Capturing and providing language details A primary chal-
lenge is capturing the full semantics of the DSML in the gener-
ated CS, especially for complex domains. As we highlighted earlier,
the process relies heavily on the comprehensiveness of the initial
prompt and the effectiveness of the feedback loop in conveying the
nuanced requirements of the DSML to the LLM. This remains a
challenge for a very complex system.

The reliance of the process on LLMs also introduces the challenge
of managing the complexity of prompts. There is an assumption
that providing more detailed and comprehensive information re-
sults in better outcomes [33]. However, overly complex prompts

can overwhelm the LLM, leading to less effective or irrelevant out-
puts [26, 54]. This balance between detail and clarity in prompts is
a critical factor in the success of the generation process.

RC2: Automating and standardizing feedback For the intelligent
generation of syntax, the user’s presence is crucial to provide feed-
back and validate the compliance of the generated results. In the
proposed process, the feedback process is highly manual. Currently,
the user is solely responsible for assessing the quality of the AI-
generated results with respect to the diverse attributes encompassed
within our framework. This user-centric approach is subjective and
significantly burdens individuals, necessitating their constant en-
gagement to ensure the results align with the different attributes of
our framework. Therefore, there exists a need for automated meth-
ods that can capture user preferences and validate the generated
results automatically. For instance, leveraging other LLMs as val-
idators and providers of feedback presents a viable strategy [32, 53].
LLMs could potentially automate the feedback and validation pro-
cesses by simulating user behavior.

RC3: Intelligent agent image understanding and generation Re-
cent research in natural language processing has witnessed unprece-
dented progress. Integrating LLMs with computer vision models
enabled the development of powerful and sophisticated chatbots
(e.g., ChatGPT, Claude). These chatbots demonstrate remarkable
proficiency in textual comprehension and generation. However,
their image understanding and generation capabilities, particularly
for complex and abstract images, remain relatively limited [49].
Further advancements in this field would enable the direct genera-
tion of more advanced concrete syntaxes for complex metamodels.
This may also allow for direct refinement and feedback steps on
graphical representations without the necessity for intermediate
textual generation.

RC4: Segmentation and integration of the metamodel In the pro-
posed process, we advised breaking down the problem into smaller
sub-problems and including only a fragment of the metamodel that
requires changes, particularly in the case of complex metamodels.
This approach would simplify the problem for LLMs, streamline
prompts, and improve outcomes. However, several considerations
should be taken into account, such as the potential risk of losing the
context, consistency, or integrity of the overall metamodel when
focusing on isolated fragments. Moreover, the granularity at which
the metamodel and problem are divided is important, as it helps to
balance oversimplification and maintaining a manageable level of
complexity. Therefore, there is a need for a systematic approach
to segment this metamodel and to divide the problem into smaller
sub-problems [8, 26].

RC5: Tooling integration and automation Users need intuitive
and robust tooling to use our envisaged intelligent CS generator.
We see multiple research questions on integrating this intelligent
generation within modeling tools. For example, qualitative and
quantitative user studies will be required to provide a streamlined
UX for user interaction with the LLM. An example is providing
prompt templates or low-code approaches for the user to easily
and reliably prompt the LLM, such as ChainForge [3]. There are
also intersections with privacy concerns, as the user’s disabilities
should not be revealed to third-party services.

Toward Intelligent Generation of Tailored Graphical Concrete Syntax MODELS ’24, September 22–27, 2024, Linz, Austria

RC6: Evaluation metrics to consider Another significant chal-
lenge is the absence of a standardized benchmark or validation
mechanism to evaluate the completeness and efficacy of the gener-
ated syntax. This makes it challenging to objectively assess when
the generated syntax meets the intended design goals, potentially
leading to an extended iterative process without clear direction.
Consequently, there is a need to design quantitative metrics to
evaluate the attributes of our framework. This would facilitate the
objective assessment of our framework (e.g., develop metrics that
measure the accessibility of the CS and the visual expressiveness
of its attributes). The process would become more efficient and less
dependent on subjective user evaluations.

To address these challenges, we propose the following metrics
for evaluating the automated generation of graphical CS:

• Computation Time and Resources: Evaluate the efficiency of
the generation process by measuring the time taken, compu-
tational resources needed by the LLM, number of prompts/-
tokens required, number of iterations, etc.

• Coverage: Ensure all metamodel elements are represented in
the graphical CS. The approach tooling can automatically
check this based on the post-processing step.

• User Satisfaction: Collect qualitative feedback from domain
experts and end users to measure how well the generated
syntax meets their needs and expectations.

• Experimental Results: Compare the resulting CS against ex-
isting CS by having users perform a series of experiments
with both. Collect qualitative and quantitative metrics to de-
termine which syntax users prefer and which leads to faster
and more accurate experiment solutions.

• Artificial Evaluation: Evaluate the CS using a multi-modal
language model. For instance, a query could determine if
the icons are culturally appropriate. This fits within a gener-
ator/adversary paradigm to automatically evolve concrete
syntaxes, as suggested by a reviewer.

6 CONCLUSION
In this paper, we presented a vision for CS generation in MDE.
First, we proposed a multi-view conceptual framework for gen-
erating CS tailored for specific usage. This framework integrates
the prescriptive view of language (e.g., context and meta-model),
the perception view (i.e., graphical language and user interface
principles), the user view (i.e., preferences and considerations), and
user-provided examples. Second, we introduced a baseline process
to use our framework with LLMs in practice. We instantiate this pro-
cess using the example language of the mind-map to showcase the
application of our framework. Finally, we discussed the traffic lights
example to highlight the limitations and research challenges related
to the intelligent generation of CS using current LLM technology.

Our findings show the potential of state-of-the-art LLMs to gen-
erate tailored CS. However, several limitations are immediately
apparent when applying our framework to a more intricate prob-
lem. It may be possible to use our approach to generate the full CS
from simple cases, but it can be used to explore different CS ideas
and concepts for more complex cases.

Our future work is to address some of the research challenges
identified in Section 5.3. In particular, we aim to develop an open-
source intelligent CS generator as a platform for future research
and development. As a first step, this platform should offer state-of-
the-art modeling guidance [10] to aid the user along the baseline
process presented in Section 4 to generate the graphical CS. We
will then conduct systematic user studies to improve the UX of
the platform and the generated CS. Further, we plan to extend our
platform to accommodate textual CS generation.

ACKNOWLEDGMENT
This article originated from the Software Engineering at Montréal
(SEMTL) research meetings, which regularly bring together the
software engineering research community in Montréal, Canada.
Find out more at https://semtl.github.io/.

REFERENCES
[1] L. Almonte et al. 2021. Automating the synthesis of recommender systems for

modelling languages. In Software Language Engineering. 22–35.
[2] D. Amyot, H. Farah, and J. Roy. 2006. Evaluation of development tools for

domain-specific modeling languages. In System Analysis and Modeling.
[3] I. Arawjo et al. 2023. ChainForge: A Visual Toolkit for Prompt Engineering and

LLM Hypothesis Testing. arXiv preprint arXiv:2309.09128 (2023).
[4] S. Arulmohan, M. Meurs, and S. Mosser. 2023. Extracting domain models from

textual requirements in the era of large language models. In Model Driven Engi-
neering Languages and Systems Companion. IEEE, 580–587.

[5] T. Baar. 2008. Correctly defined concrete syntax. Software & Systems Modeling 7
(2008), 383–398.

[6] B. Barricelli et al. 2019. End-user development, end-user programming and end-
user software engineering: A systematic mapping study. Journal of Systems and
Software 149 (2019), 101–137.

[7] A. Blouin et al. 2014. Slicing-Based Techniques for Visualizing Large Metamodels.
In Working Conference on Software Visualization. 25–29.

[8] A. Blouin et al. 2015. Assessing the use of slicing-based visualizing techniques
on the understanding of large metamodels. Information and Software Technology
62 (2015), 124–142.

[9] M. B. Chaaben, L. Burgueño, and H. Sahraoui. 2023. Towards using few-shot
prompt learning for automating model completion. In International Conference
on Software Engineering: New Ideas and Emerging Results. IEEE, 7–12.

[10] S. Chakraborty and G. Liebel. 2024. Modelling guidance in software engineering:
a systematic literature review. Software & Systems Modeling 23, 1 (2024), 249–265.

[11] K. Chen et al. 2023. Automated Domain Modeling with Large Language Models:
A Comparative Study. In Model Driven Engineering Languages and Systems. IEEE,
162–172.

[12] H. Cho, J. Gray, and E. Syriani. 2012. SyntaxMap: A Modeling Language for
Capturing Requirements of Graphical DSML. In Asia-Pacific Software Engineering
Conference, Vol. 1. IEEE, 705–708.

[13] S. Costa et al. 2021. Ontologies in human-computer interaction: A systematic
literature review. Applied Ontology 16, 4 (2021), 421–452.

[14] D. Deeptimahanti and R. Sanyal. 2011. Semi-automatic generation of UMLmodels
from natural language requirements. In India Software Engineering Conference.
165–174.

[15] K. D. Dhole, R. Chandradevan, and E. Agichtein. 2023. An interactive query
generation assistant using LLM-based prompt modification and user feedback.
arXiv preprint arXiv:2311.11226 (2023).

[16] S. Ekin. 2023. Prompt engineering for ChatGPT: A quick guide to techniques,
tips, and best practices. Authorea Preprints (2023).

[17] Frédéric Fondement. 2007. Concrete syntax definition for modeling languages.
Ph.D. thesis. Ecole Polytechnique de Lausanne.

[18] F. Fondement and T. Baar. 2005. Making Metamodels Aware of Concrete Syntax.
In Model Driven Architecture – Foundations and Applications. Springer, 190–204.

[19] W. O. Galitz. 2007. The Essential Guide to User Interface Design: An Introduction to
GUI Design Principles and Techniques. Number 3rd Edition. Wiley.

[20] T R G Green. 1989. Cognitive Dimensions of Notations. In People and Computers
V. British Computer Society Workshop Series, 443–460.

[21] Fill Hans-Georg, Peter Fettke, and Juluis Köpke. 2023. Conceptual Modeling and
Large Language Models: Impressions From First Experiments With ChatGPT.
Enterprise Modelling and Information Systems Architectures 18, 3 (2023), 1–15.

[22] D. Harel and B. Rumpe. 2004. Meaningful Modeling: What’s the Semantics of
"Semantics"? IEEE Computer 37, 10 (2004), 64–72. https://doi.org/10.1109/MC.
2004.172

https://semtl.github.io/
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172

MODELS ’24, September 22–27, 2024, Linz, Austria Ben Chaaben, Ben Sghaier, Dhaouadi, Elrasheed, Darif, Jaoua, Oakes, Syriani, Hamdaqa

[23] Z. Hu et al. 2023. Unlocking the Potential of User Feedback: Leveraging Large
Language Model as User Simulator to Enhance Dialogue System. arXiv preprint
arXiv:2306.09821 (2023).

[24] S. Karim and A. Tjoa. 2006. Towards the use of ontologies for improving user
interaction for peoplewith special needs. In International Conference on Computers
for Handicapped Persons. Springer, 77–84.

[25] S. Kelly, K. Lyytinen, and M. Rossi. 1996. Metaedit+ a fully configurable multi-
user and multi-tool case and came environment. In Advanced Information Systems
Engineering: 8th International Conference, CAiSE’96 Heraklion, Crete, Greece, May
20–24, 1996 Proceedings 8. Springer, 1–21.

[26] T. Khot et al. 2022. Decomposed prompting: A modular approach for solving
complex tasks. arXiv preprint arXiv:2210.02406 (2022).

[27] D. S. Kolovos et al. 2010. Taming EMF and GMF using model transformation. In
Model Driven Engineering Languages and Systems. Springer, 211–225.

[28] T. Kosar, S. Bohra, and M. Mernik. 2016. Domain-specific languages: A systematic
mapping study. Information and Software Technology 71 (2016), 77–91.

[29] S. Kuhar and G. Polancic. 2021. Conceptualization, measurement, and application
of semantic transparency in visual notations. Software & Systems Modeling 20
(2021), 2155–2197.

[30] T. Kühne. 2006. Matters of (Meta-)Modeling. Software & Systems Modeling 5, 4
(2006), 369–385.

[31] S. K. Lahiri et al. 2022. Interactive code generation via test-driven user-intent
formalization. arXiv preprint arXiv:2208.05950 (2022).

[32] H. Lee et al. 2023. Rlaif: Scaling reinforcement learning from human feedback
with ai feedback. arXiv preprint arXiv:2309.00267 (2023).

[33] P. Lewis et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[34] B. Li et al. 2023. Eliciting human preferences with language models. arXiv
preprint arXiv:2310.11589 (2023).

[35] L. Luque et al. 2014. Can we work together? on the inclusion of blind people in
uml model-based tasks. In Inclusive Designing: Joining Usability, Accessibility, and
Inclusion. Springer, 223–233.

[36] G. Marcus, E. Davis, and S. Aaronson. 2022. A very preliminary analysis of
DALL-E 2. arXiv preprint arXiv:2204.13807 (2022).

[37] B. Mariño et al. 2018. Accessibility and activity-centered design for ICT users:
ACCESIBILITIC ontology. IEEE Access 6 (2018), 60655–60665.

[38] O. Metatla, N. Bryan-Kinns, and T. Stockman. 2008. Constructing relational
diagrams in audio: the multiple perspective hierarchical approach. In Computers
and accessibility. 97–104.

[39] D. Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for Con-
structing Visual Notations in Software Engineering. IEEE Transactions on Software
Engineering 35, 6 (2009), 756–779.

[40] F. Mu et al. 2023. ClarifyGPT: Empowering LLM-based Code Generation with
Intention Clarification. arXiv preprint arXiv:2310.10996 (2023).

[41] P. Muller, P. Studer, and J. Jézéquel. 2004. Model-driven generative approach
for concrete syntax composition. In OOPSLA Workshop on Best Practices for
Model-Driven Development.

[42] B. A. Nardi and C. L. Zarmer. 1993. Beyond models and metaphors: Visual
formalisms in user interface design. Journal of Visual Languages & Computing 4,
1 (1993), 5–33.

[43] B. Nastov and F. Pfister. 2014. Experimentation of a Graphical Concrete Syntax
Generator for Domain Specific Modeling Languages.. In INFORSID. 197–213.

[44] A. Pescador and J. de Lara. 2016. DSL-maps: from requirements to design of
domain-specific languages. In Automated Software Engineering. 438–443.

[45] A. Rahimi et al. 2023. Towards Generating Structurally Realistic Models by
Generative Adversarial Networks. In Model Driven Engineering Languages and
Systems Companion. IEEE, 597–604.

[46] Z. Rajaei et al. 2021. A DSL for Encoding Models for Graph-Learning Processes.
In Workshop on OCL and Textual Modeling.

[47] A. Ramesh et al. 2021. Zero-shot text-to-image generation. In International
conference on machine learning. PMLR, 8821–8831.

[48] I. Ráth, A. Ökrös, and D. Varró. 2010. Synchronization of abstract and concrete
syntax in domain-specific modeling languages. Software & Systems Modeling 9
(2010), 453–471.

[49] K. I Roumeliotis and N. D. Tselikas. 2023. ChatGPT and Open-AI models: A
preliminary review. Future Internet 15, 6 (2023), 192.

[50] A. Sadik, S. Brulin, and M. Olhofer. 2023. Coding by Design: GPT-4 empowers Agile
Model Driven Development. Report 2310.04304. arXiv.

[51] A. Sarioğlu, H. Metin, and D. Bork. 2023. How inclusive is conceptual modeling? A
systematic review of literature and tools for disability-aware conceptual modeling.
In International Conference on Conceptual Modeling. Springer, 65–83.

[52] T. Schick and H. Schütze. 2021. Few-Shot Text Generation with Natural Language
Instructions. In Empirical Methods in Natural Language Processing. ACL, 390–402.

[53] O. B. Sghaier and H. Sahraoui. 2024. Improving the Learning of Code Review
Successive Tasks with Cross-Task Knowledge Distillation. Report 2402.02063. arXiv.

[54] S. Suh et al. 2023. Sensecape: Enabling multilevel exploration and sensemaking
with large language models. In User Interface Software and Technology. 1–18.

[55] E. Syriani et al. 2013. AToMPM: A web-based modeling environment. In Model
Driven Engineering Languages and Systems, Vol. 1115. CEUR-WS.org, 21–25.

[56] C. Tinnes et al. 2023. Towards Automatic Support of Software Model Evolution
with Large Language˜ Models. Report 2312.12404. arXiv.

[57] J. Van Gurp, J. Bosch, and M. Svahnberg. 2001. On the notion of variability in
software product lines. In Working Conference on Software Architecture. 45–54.

[58] Y. Van Tendeloo et al. 2017. Concrete Syntax: A Multi-Paradigm Modelling
Approach. In Software Language Engineering. ACM, 182–193.

[59] V. Viyović, M. Maksimović, and B. Perisić. 2014. Sirius: A rapid development of
DSM graphical editor. In Intelligent Engineering Systems. IEEE, 233–238.

[60] Y. Wang et al. 2020. Generalizing from a few examples: A survey on few-shot
learning. Comput. Surveys 53, 3 (2020), 1–34.

[61] J. Wei et al. 2022. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems 35 (2022), 24824–
24837.

[62] M. Weyssow, H. Sahraoui, and E. Syriani. 2022. Recommending metamodel
concepts during modeling activities with pre-trained language models. Software
& Systems Modeling 21, 3 (2022), 1071–1089.

[63] M. Wolfgang. 2006. Laws of Seeing. MIT Press.
[64] L. Wouters. 2013. Towards the notation-driven development of DSMLs. InModel-

Driven Engineering Languages and Systems, Vol. 16. Springer, 522–537.
[65] S. Yang and H. Sahraoui. 2022. Towards automatically extracting UML class

diagrams from natural language specifications. In Model Driven Engineering
Languages and Systems Companion Proceedings. 396–403.

[66] S. Zhang et al. 2023. Instruction Tuning for Large Language Models: A Survey.
Report 2308.10792. arXiv.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Defining Graphical Concrete Syntax
	2.2 Capturing User Constraints
	2.3 Generation of Language Aspects
	2.4 Synthesis

	3 Views to Tailor Concrete Syntax
	3.1 Prescriptive View
	3.2 Perception View
	3.3 User View
	3.4 Positive and Negative Examples

	4 Intelligent Generation Framework for Tailored Concrete Syntax
	4.1 Step 1: Metamodel Pre-processing
	4.2 Step 2: Initial Prompt- Prescriptive view specification
	4.3 Step 3: Generation of Textual GCS Draft
	4.4 Steps 4 and 5: Representation of GCS in NL
	4.5 Steps 6 and 7: Generation of GCS
	4.6 Step 8: Post-processing

	5 Discussion
	5.1 Success for Simple DSMLs
	5.2 Shortcomings for Complex DSMLs
	5.3 Research Challenges

	6 Conclusion
	References

