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Abstract—Extracting rationale information from commit mes-
sages allows developers to better understand a system and its past
development. Here we present our ongoing work on the Kantara
end-to-end rationale reconstruction pipeline to a) structure ra-
tionale information in an ontologically-based knowledge graph,
b) extract and classify this information from commits, and c)
produce analysis reports and visualizations for developers. We
also present our work on creating a labelled dataset for our
running example of the Out-of-Memory component of the Linux
kernel. This dataset is used as ground truth for our evaluation
of NLP classification techniques which show promising results,
especially the multi-classification technique XGBoost.

Index Terms—rationale structuring, rationale extraction, Natu-
ral Language Processing, Linux, ontology, dataset, openCAESAR

I. INTRODUCTION

The development of software systems involves constant
decision-making at various levels of abstraction and degrees of
importance. For every such decision, the system developer has
a rationale, i.e., the why reasoning that explains their decision.
Rationale may be more or less explicitly articulated and is
often left implicit or unrecorded. Regardless, it is a very useful
piece of information for the development team, as it can be
used to learn from mistakes or reuse solution patterns [1].
Many researchers have thus attempted to extract rationale and
to help developers leverage it [2]–[5].

In this article, we focus on the rationale expressed in devel-
oper commit messages submitted to version control systems
such as Git. Tian et al. have found that a quality of a “good”
commit message is that it contains rationale information [6].
Such information can help other developers understand and
contextualize the proposed changes with respect to other
project commits. Crucially, it also allows other stakeholders
to assess the quality of the proposed changes and how well
the changes fit with the project requirements. Over time, these
messages help build a shared understanding of the design and
behavior of the software system among the development team.

Author pre-print. Accepted at MDEIntelligence 2023. Final published
version may differ. ©2023 IEEE.

The primary challenge to understanding rationale is that
rationale information in commit messages is not typically ex-
pressed in a structured representation or model, and instead is
embedded in natural language text. Therefore, identifying and
understanding the rationale depends on deep prior knowledge
of the project context. This increases the mental effort required
to understand a commit, its key decisions, and their rationale.
From the point of view of maintaining a shared understanding,
this makes it harder to on-board new contributors, and makes
it difficult to assess the quality of the provided rationale of
each new commit. Finally, it makes it difficult to establish and
maintain traceability with decisions and rationale information
elsewhere in the project.

Here, we here present our results towards extracting mod-
els of rationale from commit messages using the Kantara
framework for end-to-end rationale reconstruction [7]. Kantara
defines an information inference component to structure and
extract rationale information, and an analysis interface to un-
derstand the extracted rationale. We apply a proof-of-concept
demonstration of Kantara to a set of 180 commits from a Linux
kernel subsystem. The main contribution is showcasing the
practicality of end-to-end rationale extraction and analysis for
a real world software project, and highlighting the challenges.

In Section II we explain our running example of the
OOM-Killer subsystem in the Linux kernal, our approach to
labelling this subsystem’s commits with the rationale infor-
mation, and discuss our insights on how kernel developers
explain their commits. The extraction of rationale information
from commits is presented in Section III, where Natural Lan-
guage Processing (NLP) techniques are used to automatically
classify commit sentences. From our ground truth dataset,
we quantitatively evaluate the performance of our classifiers.
Section IV provides our contribution on the structuring of
this rationale information in an ontologically-based knowledge
graph [8], along with our efforts on representing this graph as
an ontology in the openCAESAR framework [9] to leverage
ontological semantics for inferencing. Section V discusses the
analysis of the rationale information once it is placed in the
ontological format. We present a query operating on this graph
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to extract valuable information about commit sentences, and an
interactive visualization allowing a user to better understand
how rationale is presented in commits by different authors.
In Section VI, we overview related work, while Section VII
concludes with a discussion on challenges we faced and the
future work to address them.

II. RUNNING EXAMPLE: LINUX SUBSYSTEM

This section will discuss our running example of the Out-
of-Memory (OOM) memory management subsystem in the
Linux kernel. First, the kernel itself and relevant development
information is presented. Then, we discuss the OOM subsys-
tem itself. Finally, we discuss our ongoing work on labelling
rationale information in the commits of the OOM subsystem.

A. Linux Kernel and Development

Since its creation by Linus Torvalds in 1991, the Linux ker-
nel has grown to run on devices ranging from mobile phones
and tablets to supercomputers. This wide-spread adoption is
partially due to its open-source and collaborative development.

The main development channel for Linux is the Linux Ker-
nel Mailing List (LKML)1. The LKML contains email threads
concerning every aspect of Linux development, including bug
reports and potential patches. For example, this email2 is a
request for comment (RFC) on a potential patch to be applied
to the kernel. Once the patches are accepted by a subsystem
maintainer, they are passed through the maintainer hierarchy
until the patches arrive at Linus Torvalds himself to be applied
and released as a new version of Linux.

To maintain a high degree of quality in the Linux kernel,
there are requirements for patch submission3. Among these,
the subject line for the email containing the patch must fit
a particular standard. This patch email must also contain a
few lines or paragraphs describing the motivation/rationale
behind the patch, and the impact on the kernel the patch
will have. Traceability information is provided in multiple
ways, such as a) patches are encouraged to add explicit
links to LKML discussions in the patch descriptions, and b)
patches must have a summary phrase (such as “oom: give the
dying task a higher priority”) which allows for tracing this
patch across commits and LKML discussions. Linux kernel
commit messages are thus a comprehensive repository of
decision/rationale information to evaluate our approach.

B. Out-of-Memory Killer (OOM-Killer) Subsystem

The OOM-Killer kernel subsystem frees up memory when
tasks have requested all available memory, preventing the
system from crashing due to the lack of available memory. The
OOM-Killer performs two primary tasks: a) it selects a task to
kill, then b) it forces that task (the OOM victim) to release its
memory and exit. The selection process is particularly relevant
for our examination, as there are rich discussions about the best
way to select the task to kill. For example, one code change

1Various archives exist for the LKML such as https://lkml.org/.
2https://lore.kernel.org/all/20100527180431.GP13035@uudg.org/
3https://www.kernel.org/doc/html/latest/process/submitting-patches.html.

TABLE I: Codebook

Label Meaning

Decision An action or a change that has been made,
including a description of the patch behaviour

Rationale Reason for a decision or value judgment
Supporting Facts A narration of facts used to support a decision
Inapplicable Pre-processing error or bad sentences

(i.e., does not contain English sentences)

was to reduce the chance of selecting kernel tasks specifically,
later reversed in favor of a uniform selection process.

This OOM approach has been controversial since its origin
in 1998, as some developers reason that the system should be
allowed to crash in the presence of faulty software, or express
concern that desirable user processes (such as a windowing
environment) may be selected for killing.

C. Labelling Dataset for OOM Commits

To evaluate our Kantara framework (Section III), we require
a form of ground truth to measure our extraction approaches.
For this purpose, we are systematically creating a dataset of
labelled commit messages for the OOM subsystem indicating
the rationale information present in each commit sentence [10].

1) Commit Pre-processing: To create our data set, we
selected 180 commits from the commit history of the OOM-
killer file4. We did not include any merge commits, i.e.,
commits whose messages start with Merge tag. We pre-
processed the messages of these commits: For each message,
we removed the meta-data at the end of the message (e.g, in-
formation like Signed-off-by and Suggested-by were removed).
We also removed URLs, references to other resources, and
call traces using regular expressions. Afterwards, we split the
message into sentences and kept only sentences with more
than 3 characters and that are not source code. We identified
the source code in the message body using heuristics like
identifying keywords or symbols such as git, $cd or $echo.
These keywords came from manually investigating the data.

2) Sentence Labelling Procedure: We performed six iter-
ations of piloting rounds and consolidation meetings during
which the three annotators (a PhD student, a post-doctoral
researcher, and a professor) considered 38 randomly-chosen
commits in total (which they annotated independently). Fi-
nally, we reached a consensus regarding the set of labels to
use and our understanding of each label as shown in Table I.

We conducted the labelling by batches where if two anno-
tators said yes to a label, then this was taken as the consensus.
During the labelling process, Fleiss Kappa averaged 0.69
for eight rounds (so far). This indicates strong agreement
considering the subjective nature of rationale [1].

3) Sentence Classification: Our rounds of labelling and
consensus-building led us to further insights on how to classify
each sentence. Consequently, we have updated our represen-
tation of rationale from what we had previously reported

4https://github.com/torvalds/linux/commits/master/mm/oom_kill.c accessed
on 2023-01-12
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Sentence Labelling
mm, oom: base root bonus on current usage Decision
A 3% of system memory bonus is sometimes too excessive in comparison to other processes. Supporting Facts, Rationale
With commit a63d83f427fb (“oom: badness heuristic rewrite”), the OOM killer tries to avoid killing privileged tasks by
subtracting 3% of overall memory (system or cgroup) from their per-task consumption.

Supporting Facts

But as a result, all root tasks that consume less than 3% of overall memory are considered equal, and so it only takes 33+
privileged tasks pushing the system out of memory for the OOM killer to do something stupid and kill dhclient or other
root-owned processes.

Supporting Facts, Rationale

For example, on a 32G machine it can’t tell the difference between the 1M agetty and the 10G fork bomb member. Supporting Facts
The changelog describes this 3% boost as the equivalent to the global overcommit limit being 3% higher for privileged
tasks, but this is not the same as discounting 3% of overall memory from *every privileged task individually* during
OOM selection.

Supporting Facts

Replace the 3% of system memory bonus with a 3% of current memory usage bonus. Decision
By giving root tasks a bonus that is proportional to their actual size, they remain comparable even when relatively small. Rationale, Decision
In the example above, the OOM killer will discount the 1M agetty’s 256 badness points down to 179, and the 10G fork

bomb’s 262144 points down to 183500 points and make the right choice, instead of discounting both to 0 and killing
agetty because it’s first in the task list.

Rationale

TABLE II: An example commit with labelled sentences from our dataset

in our earlier work [7]. In particular, as we now examine
commits at a sentence-level, each sentence is given multiple
classifications. We have also introduced the concept of a
supporting fact to indicate sentences which do not themselves
contain rationale, but instead present the current state of the
system as explanatory text for the commit.

That is, a supporting fact is information in a sentence
where a developer discusses the currently existing state of
the system, at the moment before they propose a change.
An example would be the description of the behaviour of a
previous commit, such as the third sentence in Table II. Due to
this reference to the past or current state of the system, these
supporting facts are often found in the first half of the commit,
and before the sentences containing rationale. In contrast, a
decision provides information about the state of the system
after the patch is applied, and thus it refers to the system’s
future state. Rationale is the reason for why a decision is taken,
such as a value judgement about undesirable behavior.

Table II reproduces a commit from our dataset, along with
a color-coded multi-label classification for each sentence. As
an example of the labelling, the first sentence (the summary
phrase of the commit) is labelled as a decision as it states
the patch’s change. The fourth sentence contains rationale as
a value judgement (“something stupid”) and supporting facts
(“only takes 33+ privileged tasks”).

4) Dataset Insights: An insight from this dataset is that
there seems to be a trend for about 40-50% of the sentences
in a commit message to contain rationale information [10].
For example, four out of nine sentences in Table II contain
rationale. This trend could indicate a “natural” amount of
rationale that developers include in their commit messages,
or maybe a guideline for developers to target.

Figure 1 shows the distribution of the sentences over the
identified categories5. This distribution motivates our creation
of the supporting facts category, as there are many sentences
that contain supporting facts but do not contain rationale. Also
evident is the clear separation between sentences containing

5Note that the colouring shown in Figure 1 for each category is also
reflected throughout other tables and figures in this article.

356 94

307

2277
23

Supporting
 Facts

137

Rationale

Decision

Fig. 1: Distribution of the sentences in our OOM dataset

decisions and those with supporting facts. However, the cate-
gory of rationale is less clear-cut, with a substantial overlap
between sentences with rationale and the other categories. One
interpretation is that this indicates the subjective nature of
rationale. Another possibility is that rationale is present in
these sentences to motivate decisions and to provide value
judgments on the existing state of the system as discussed in
supporting facts. Examples of these multi-label sentences are
found in Table II.

III. EXTRACTING RATIONALE INFORMATION

This section will discuss a key part of the Kantara frame-
work: the classification of sentences with respect to whether
they contain rationale, decisions, or supporting facts. We dis-
cuss our approaches and provide an evaluation of our approach
on our Linux subsystem dataset discussed in Section II-C.

Considering the subjective nature of the rationale informa-
tion and the notable overlap between the different categories
(Fig. 1), we investigated two classification approaches: binary
classification (we do not consider the overlap), and multi-label
classification (we consider the overlap). We selected the TF-
IDF vectorizer to embed the commit messages. The vectors
were then input into various ML models. We used the sklearn6

6https://scikit-learn.org/stable/index.html
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TABLE III: Binary classification evaluation

Model Decision Rationale Supporting Facts
Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

Logistic Regression 0.72 0.75 0.20 0.30 0.69 0.20 0.03 0.05 0.70 0.75 0.13 0.21
Decision Tree 0.78 0.71 0.61 0.64 0.68 0.51 0.57 0.53 0.71 0.59 0.46 0.51

SVM 0.73 0.85 0.22 0.33 0.69 0.20 0.03 0.04 0.71 0.75 0.17 0.27

library for the models implementation and kept the default
parameters values. The models were trained and evaluated
using 10-fold cross-validation. That is, the data was randomly
divided into ten equal splits, and nine of them were used for
training and one for evaluating performance. We report the
mean scores from these evaluations.

A. Binary classification

In binary classification problems, any of the samples from
the dataset takes only one label out of two classes. We there-
fore consider the subset of the OOM dataset with the sentences
that were labelled with only one label. Specifically, we ended
up with 307 decision sentences, 94 rationale sentences and
356 supporting facts sentences. Since the data is imbalanced,
we apply under-sampling to the majority classes and consider
only 100 decision sentences and 100 rationale sentences. We
then trained different classifiers considering one label at a time
(i.e, when trying to classify decision sentences, rationale and
supporting facts sentences we labelled as negative).

Table III reports the classification results of the widely-used
binary classification models: Logistic Regression, Decision
Tree and Support Vector Machines (SVM) [11]. We report the
Accuracy, Precision, Recall and F1-score evaluation metrics.

From Table III, we extract four insights. First, the over-
all recall across the binary classification techniques is low.
Second, the Decision Tree algorithm gave the overall best
results. Third, the classification of the Decision sentences was
more successful than the classification of the Supporting Facts
sentences. Finally, the performance of the three classifiers
when classifying Rationale sentences was rather low.

B. Multi-label classification

The multi-label classification is the most natural approach
that applies to our problem as any sample from the dataset
can be labelled with more than one label. In this experiment,
we considered 1151 sentences (distributed as shown in Fig. 1)
and we tried widely-used models for multi-label classification
including the eXtreme Gradient Boosting (XGBoost) [12]. We
report the micro-averaged evaluation results over the three
categories in Table IV. Results indicate that the XGBoost
classifier gave the overall best performance.

We split the dataset to 60% train set and 30% test set. We
train XGBoost on the train set and test it on the test set. We
report its performance on the three categories in Table IV.
Results indicate that the best classification results were for
the Decision label, the second best were for the Supporting
Facts. The Rationale classification results were the worst.

TABLE IV: Multi-label classification evaluation

Model Precision⋆ Recall⋆ F1 score⋆
Random Forest 0.73 0.51 0.60

XGBoost 0.67 0.60 0.63
KNN 0.60 0.50 0.54

⋆ Micro-averaged
XGBoost classification evaluation

Label Precision Recall F1-score
Decision 0.76 0.69 0.72
Rationale 0.62 0.41 0.49

Supporting Facts 0.64 0.68 0.66

C. Summary

These results indicate that the most challenging task is
rationale classification, possibly due to the overlap of cat-
egories in the messages themselves, as seen in Figure 1.
We find that the Decision Tree and XGBoost techniques are
most promising, but further investigation is needed to provide
satisfactory results.

IV. STRUCTURING RATIONALE INFORMATION

This section will discuss our contribution on structuring
commit rationale information in an ontological-based manner.

A. Decision/Rationale (DR) Graph

In our previous work [7] we defined a graph structure to
explicitly represent commits, their labelling, and their relation-
ships. For example, we related conflicting or similar commits
together and represented the rationale for each commit as
free text. Our current work is investigating the structure
and classification of the rationale for one commit; we thus
omit those inter-commit relationships here. Instead, from our
insights from our labelling procedure (Section II-C), we now
focus on rationale information at the sentence level where
sentences can have multiple labels.

Table II shows the example commit in textual form with
sentences colored according to their label, while Figure 2
represents that commit as a DR graph. A commit has the usual
information like the commit hash and the date, and each com-
mit is linked to its author and the individual sentences within
the commit text. Each Sentence at the bottom of Figure 2
has a link to the nextSentence (to retain the structure of the
commit), and are multi-typed with each label. Section IV-C
explains how these classifications are inferred automatically
through ontological semantics, which aids the analysis and
reporting functionality of the Kantara framework.

B. Ontological Representation

The DR graph described in the previous section explicitly
captures concepts and their relation. This makes it natural to
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authorName = "David Rientjes"

Commit

commit_hash = 778c14a
date = 2014/01/31

mm, oom: base root bonus on current usage

A 3% of system memory bonus[...]

In the example above[...]

...

Author

Sentence

Sentence

Sentence

DecisionSentence

SFactsSentence

RationaleSentence

RationaleSentence

url = https://lore.kernel.org/all/alpine.DEB.2.02.
1401251942510.3140@chino.kir.corp.google.com/

Source

hasAuthor
contains

nextSentence

nextSentence

hasSource

Fig. 2: Decision/Rationale Graph

opt for a representation of this DR graph using an ontological
basis, as ontologies represent “a shared understanding of a
domain” [13].

For the concrete ontological graph implementation, we use
the openCAESAR framework7 developed by the NASA Jet
Propulsion Laboratory (JPL) instead of a traditional onto-
logical tool such as Protegé. This is due to the approach
of openCAESAR [9] which abstracts over the complex log-
ical foundations of the well-known Web Ontology Language
(OWL) to instead provide a high-level language for defining
ontologies using the Ontological Modeling Language (OML).

Briefly, the openCAESAR methodology for creating on-
tologies focuses on the creation of a) vocabulary models
which correspond to ontology concepts (the A-box), and b)
description models which correspond to ontology individuals
(the T-box). The Rosetta editor provided by the openCAESAR
framework is shown in Figure 3. In Figure 3a, the textual OML
syntax is shown for the rationale vocabulary, defining the core
concepts for Commits and Sentences and their relationship.
Listing 1) reproduces a portion of this vocabulary. Figure 3b
presents the OML graphical syntax.

Listing 1: Excerpt of the OML rationale vocabulary model
1 a s p e c t SentenceClassificationType
2 c o n c e p t DecisionSentence <
SentenceClassificationType

3 c o n c e p t RationaleSentence <
SentenceClassificationType

4 c o n c e p t SupportingFactSentence <
SentenceClassificationType

5 r e l a t i o n entity SentenceClassification [
6 f r o m Sentence
7 t o SentenceClassificationType
8 f o r w a r d hasClassification
9 a s y m m e t r i c

10 ]

7http://www.opencaesar.io/

On the right of Figure 3b are the types of sentence classi-
fication and the subtypes of sentences which connect to each
of these types of classification. We leverage the ontological
approach to assign these subtypes to individual sentences
through inferencing discussed in Section IV-C.

The advantages are that a) subtypes of sentences can be
automatically inferred by the ontological reasoner, and b)
sentences can be labelled with multiple classification types.
While this could be adequately captured using a standard
meta-modelling approach, we found that this ontology-based
approach simplified our analyses and more accurately captured
the meaning of our labelling.

C. Inferencing

An advantage of storing the commit and rationale informa-
tion in an ontology is that ontologies naturally form a graph
structure (a “knowledge graph” or “knowledge base”) suitable
for inference and querying [8]. We leverage this inferencing
capability of ontologies to perform additional reasoning on
our data set. From the Rosetta editor, tasks are available to
run the Pellet ontological reasoner to perform this inferencing
and check the consistency of the vocabulary and descriptions.

An example of this reasoning in the rationale vocabulary
is found in Listing 2. The rule defines a antecedent/precedent
rule where if s is a sentence and it has a classification of
ct, where that ct is Rationale, then the sentence s should be
inferred to be a RationaleSentence. While this is a straightfor-
ward rule, the benefit is that it simplifies the further analysis
and reporting of which sentences contain rationale. That is, the
analysis and reporting steps will not have to follow extra edges
to determine if a sentence is classified as having rationale or
not.

Listing 2: Classification rules for Sentences and Commits
1

2 c o n c e p t DecisionSentence < Sentence
3 c o n c e p t RationaleSentence < Sentence
4 c o n c e p t SupportingFactSentence < Sentence
5

6 r u l e RationaleSentenceInfer [
7 Sentence (s) & hasClassification (s, ct) &

Rationale (ct) -> RationaleSentence (s)
8 ]
9

10 c o n c e p t CommitWithRationale = Commit [
11 r e s t r i c t s b a s e:contains t o min 1

RationaleSentence
12 ]

The restricts inference rule in Listing 2 goes farther with
a similar typing action. Here, a commit that contains at least
one RationaleSentence is a CommitWithRationale. Again, this
simplifies analysis and reporting by removing the need to
resolve links during those phases. For instance, without this
inferencing, each analysis and report would have to determine
if a commit contains a sentence with a classification type of
rationale. Instead, this inferencing allows us to directly query
for whether the commit is a CommitWithRationale.

Section V presents an analysis query and visualization
which we have developed within the openCAESAR framework
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(a) Textural format (b) Graphical format

Fig. 3: Rationale vocabulary editing within the Rosetta component of openCAESAR

to better understand the rationale information. This query
directly relies on these inferences.

V. ANALYSIS

This section discusses the last step of the Kantara frame-
work: analysis and visualization of the extracted rationale
information. The intention of Kantara is to provide the user
with insights into the presence of rationale in the commit
sentences. This can be used to increase the quality of commit
messages. For example, the patch submission process could
require a certain percentage of the commit to contain rationale.
Or, this could be used to identify authors or subsystems with
insufficient rationale, so that interventions could be made.

A. Graph Queries

We employ the openCAESAR framework to build the ratio-
nale ontology, such that Kantara can produce OML description
models through text generation which conform to this vocab-
ulary (Section IV-B). Then, we can execute SPARQL queries
on these description models to obtain results. For a developer
to better understand the rationale information present in our
DR graph, we have created queries such as querying for a
list of authors and their commits, and querying for those
sentences classified as DecisionSentence, RationaleSentence,
or SupportingFactSentence.

Listing 3 demonstrates a more comprehensive SPARQL
query (with omitted PREFIXes) which can be executed within
the openCAESAR framework to return a JSON result contain-
ing commits, their authors, and whether each commit contains
rationale. This table also contains the text and classification
type(s) for each sentence in that commit.

Note that this query directly relies on the inference rules
discussed in Section IV-C. With the typing provided by the
inference rules, the query can be more concise. This motivates
our choice of using an ontological approach for storing this
rationale information.

B. Visualization

The results of the query in Listing 3 can be inspected
in tabular form but we developed Kantara to also support
interactive visualization, e.g., to display authors, their com-
mits, and the sentences within those commits. The intention

Listing 3: Query for commits and labelled sentences

1 SELECT ?author ?commit_id ?order ?text
2 (BOUND(?hasRationale) AS ?isCommitWithRationale)
3 (BOUND(?rct) AS ?isSentenceRationale)
4 (BOUND(?dct) AS ?isSentenceDecision)
5 (BOUND(?sct) AS ?isSentenceSupporting)
6 WHERE {
7 ?commit a rationale:Commit .
8 ?commit baseV:hasIdentifier ?commit_id .
9 ?commit rationale:hasAuthor ?author_id .

10 ?author_id authorV:authorName ?author .
11 ?commit baseV:contains ?s .
12 ?s rationale:text ?text .
13 ?s rationale:sentenceOrder ?order
14 OPTIONAL {
15 ?commit ?hasRationale rationale:

CommitWithRationale .
16 }
17 OPTIONAL {
18 ?s ?rct rationale:RationaleSentence .
19 }
20 OPTIONAL {
21 ?s ?dct rationale:DecisionSentence .
22 }
23 OPTIONAL {
24 ?s ?sct rationale:SupportingFactSentence .
25 }
26 }
27 ORDER BY ?commit_id ?order

is for developers to use such visualizations to understand the
rationale information present in each commit.

Figure 4 shows a screenshot of a particular visualization
that that centres committers’ practices. In the example shown
we focus on OOM developer Michel Lespinasse, who has
authored one commit (c25) without rationale, and two commits
(c26, c27) with rationale. The interactivity of the visualization
allows the user to collapse or expand the children of nodes to
focus on certain authors or commits. The visualization runs
within a web browser and is built using Javascript and the D3
library, modified from an example provided in openCAESAR.

Authors are the left-most node in Figure 4 where the color
indicates whether their commits contain rationale or not. Each
commit (c25, c26, etc.) are shown to the immediate right.
Finally, the sentences making up that commit are on the right-
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Fig. 4: Interactive visualization of authors, their commits, and commit sentence text

hand side, with the same coloring as in Figure 1 and Table II
to indicate the classification of the sentence. In Figure 4, all
seven sentences are labelled as decisions, and two are also
labelled as rationale.

This visualization provides insight in committers’ rationale
documentation practices in these commits. It lets a developer
understand the presence of decisions, rationale, and supporting
facts written by others, exposing commonalities in a set of
commits. It also highlights committers whose commits do not
provide rationale. This could help the community to improve
its rationale documentation practices, by alerting maintainers
to commits with insufficient rationale information.

VI. RELATED WORK

We divide related work into two categories: extraction of
rationale and representations of rationale.

A. Extracting Rationale

Sharma et al. employed a heuristics-based approach to try to
unearth rationale from Python Email Archives [14]. In [15], the
authors propose ASGAR, a semantic grammar-based approach
to automatically capture and structure design rationale. These
works differ from ours as we propose an NLP-based approach.

Other researchers have employed machine learning (ML)
techniques to extract rationale. In [16], the authors tried to
automatically identify decisions from textual artifacts. They
created a labelled ground truth from the Hibernate developer
mailing list and tried various classification models and con-
figurations. Similarly, in [17], the authors analyzed Apache
commit messages to study the impact of message quality on
software defect proneness. As a quality indicator, the authors
considered the binary presence of rationale information and
they manually labelled the commits as containing or not
motivation/rationale information. These works employ binary
classification, thus our work differs by proposing a rationale
representation with different multi-classifications (Table I).

ML techniques have been employed in an attempt to solve
the capture problem (i.e., the large effort required to capture
the rationale manually and adhere to a specific representa-
tion) [18]. They aim at bridging the gap with the unused
existing rationale representation models such as Burge’s ra-
tionale model [1]. For example, in [19], the authors propose
annotating chat messages that contain rationale by capturing
five rationale elements adapted from the IBIS model [20].
In [5], the authors focus on designing an algorithm to extract

and structure design rationale from design documents based on
the ISAL model [21]. Rogers et al. investigated the usage of
ontology and linguistic features to identifying rationale from
Chrome bug reports [22], Lester et al. investigate evolutionary
algorithms for optimal features to extract and classify design
rationale from Chrome bug reports and design discussion tran-
scripts [23], and Mathur tried to improve Lester’s classification
results for the rationale with new features and algorithms [24].
These model-based classification approaches differ from the
data-driven categorization we employ in this work.

B. Representing Rationale

Recently, other rationale representations have been pro-
posed. AlSafwan et al. proposed a model with 15 cate-
gories to represent rationale in code commits after conduct-
ing interviews and a survey [25]. Hesse et al. proposed
a documentation model for decision knowledge built upon
the results investigating the comments to 260 issue reports
from the Firefox project [26]. Kleebaum et al. built upon
Hesse’s documentation model and proposed Condec tools to
support requirements engineers in documenting and exploiting
decision knowledge for change impact analysis [27]. ConDec
tools build up and visualize a knowledge graph consisting of
knowledge elements and trace links. Soliman et al. worked on
an empirically-grounded ontology for architecture knowledge
from StackOverflow [28]. Their work also supports automat-
ing architecture knowledge capturing and proposing solutions
to effectively search for relevant architectural information
in developer communities. Bhat et al. proposed AdeX, a
framework to extract and reuse architecture knowledge and
to recommend alternative architectural solutions that could
be considered during architectural design making [29]. The
authors propose a static and a dynamic architectural knowledge
models. In AdeX, the rationale of a decision refers to the
quality attribute the decision addresses. AdeX automatically
identifies architectural elements in design decisions. These
architectural elements are identified using concepts captured
in a publicly available cross-domain ontology.

The related work differs from our in two main ways. First,
none of these works focus on representing and managing
the rationale specifically for the Linux kernel. Second, we
provide a knowledge graph-based approach and pipeline using
the state-of-the-art openCAESAR tool for constructing and
querying ontologies.
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VII. CONCLUSION AND FUTURE WORK

This article has presented the Kantara framework for struc-
turing and extracting the rationale found in the commits
of developers. We have presented our new classification of
rationale information, focusing at the sentence-level and now
including rationale, decision, and supporting fact labels. We
discussed approaches to classify each sentence using NLP ap-
proaches and a brief evaluation. Finally, we described how this
rationale information is represented using an ontologically-
based knowledge graph in the openCAESAR framework [9],
along with the analysis and reporting capabilities in Kantara.

Challenges and Future Work

a) Challenge 1: Expanding the Rationale Ontology:
Our categorization of components of the rationale of commits
was data-driven where we came to a consensus after several
discussions during labelling II-C. Our model here focuses on
sentence-level labelling to evaluate our Kantara framework and
the NLP classification. In the future, we plan to extend our
representation to include all the components of the rationale
of commit messages (e.g. Goal, Need, Benefit, etc. [25]) and
other previous rationale representations (Section VI).

b) Challenge 2: Subjective labeling: It is possible that
our manual labelling process has introduced unintentional bias.
To address this, the three authors labelled independently. A
Fleiss kappa of 0.69 indicates a high reliability of our labelling.
In the future, we are exploring avenues such as: a) including
kernel developers themselves to validate our labels, or b)
determining if large language models (LLMs) can provide
suitable performance for this labelling task.

c) Challenge 3: Classification performance: As shown in
Section III, the performance of the classification approaches
was rather average. While it may not be possible to achieve
perfect performance due to the subjective nature of this
classification, we are attempting to improve these metrics.
Concrete steps include a) applying hyper-parameter tuning to
all classifiers to find optimal hyper-parameters, b) expanding
our labelled data set of commit messages, and c) investigating
more advanced classification architectures such as Bidirec-
tional Long Short-Term Memory (Bi-LSTM) [30] or pre-
traineed language models, e.g., BERT [31]

d) Challenge 4: Generality: The last challenge we wish
to address is the threat to validity of generalizing this classifi-
cation approach and our insights. Section II describes how the
Linux kernel and the OOM subsystem have a particular devel-
opment culture which emphasizes detailed commit messages.
This culture may not be present in other projects, such that
developers are not encouraged or required to produce commits
with such detailed rationale information. In future work, we
will investigate this by applying our Kantara approach to other
codebases.
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