
openCAESAR: Balancing Agility and Rigor in
Model-Based Systems Engineering

Maged Elaasar ∗, Nicolas Rouquette ∗, David Wagner∗,
Bentley James Oakes †§, Abdelwahab Hamou-Lhadj ‡∗ and Mohammad Hamdaqa §

∗NASA Jet Propulsion Lab, California Institute of Technology, Pasadena, USA
Email: {maged.e.elaasar,nicolas.rouquette,david.a.wagner}@jpl.nasa.gov

†DIRO, Université de Montréal, Montreal, Canada
Email: bentley.oakes@umontreal.ca

‡Electrical and Computer Engineering, Concordia University, Montreal, Canada
Email: wahab.hamou-lhadj@concordia.ca

§Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada
Email: {bentley.oakes,mhamdaqa}@polymtl.ca

Abstract—Model-Based System Engineering (MBSE) employs
models and formal languages to support development of complex
(systems-of-) systems. NASA Jet Propulsion Laboratory (JPL)
sees MBSE as a key approach to managing the complexity of
system development. However, balancing agility and rigor in
MBSE has been reported as a challenging task not yet addressed
by modeling tools and frameworks. This is because existing
MBSE approaches may enable agility but compromise rigor,
or enhance rigor but impede agility. We discuss the challenges
of balancing agility and rigor in MBSE across seven systems
engineering architectural functions defined by the JPL Integrated
Model-Centric Engineering (IMCE) initiative. We demonstrate
how openCAESAR, an open-source MBSE methodology and
framework created at JPL, can strike a balance between agility
and rigor through a case study of the Kepler16b project and
discussion of lessons learned from past projects.

Index Terms—Systems Engineering, Model-Based Systems En-
gineering, Ontology-based Modeling, OML, openCAESAR

I. INTRODUCTION

Model-based Systems Engineering (MBSE) methodologies
employ models and formal languages to support requirements,
design, analysis, verification, and validation steps during the
development of complex systems and system of systems [1].
Rather than a document-centric approach, models are regarded
as first-class entities and central artifacts in MBSE for rep-
resenting the system, information about a system, and the
MBSE process itself. This reduces time and cost, and improves
communication in the systems engineering process [2].

NASA Jet Propulsion Laboratory (JPL) is a research de-
velopment center in California under contract with NASA to
focus on the development and operation of planetary robotic
spacecraft, Earth-orbit, and astronomy missions. With over
85 years of experience in engineering complex systems, JPL
has embraced MBSE as a key approach to managing the
complexity of systems and their development.

Author pre-print. Accepted at SAM 2023. Final published version may
differ. ©2023 IEEE. Other rights reserved by NASA JPL and/or its affiliates.

A. Balancing Agility and Rigor in MBSE

Systems engineering is a multi-disciplinary field that in-
volves integrating models that have been created by authors
with expertise from different domains into complex systems.
[2], [3]. Even a small-scale project, such as the illustrative
Kepler16b project discussed here, involves concepts such
as electrical, mechanical, optics, orbital mechanics, and risk
management, among others.

The experience of JPL on past projects on these complex
systems of systems reveals the inherent challenge in utilizing
existing MBSE approaches to strike the right balance between
agility and rigor in system development. JPL’s requirements
go beyond the Agile Manifesto [4], focusing on the change-
ability, rate, and speed of system development, to also include
reproducibility and trust in the entire modeling pipeline. This
pipeline connects models originating in different tools, where
the life-cycle is from model creation and evolution to deploy-
ment and operations. Additional DevOps principles [5] are
therefore required at the modeling level to ensure that the
system development process supports frequent integration be-
tween components from different domains, address scalability,
model configuration and dependency management concerns,
supports model federation, distribution, and versioning, and
enables continuous model delivery and on-demand reporting.

The MBSE process at NASA JPL also requires intense rigor
to achieve high-quality system development. For example,
JPL identifies the need for scalable multi-domain analyses
which tackle the consistency, correctness, and completeness
of model elements. Knowledge from multiple domains must
be captured and formally reasoned about to remove errors and
inconsistencies introduced during the system’s development.

Existing MBSE approaches (see Section V) that prioritize
flexibility and adaptability can enable agility but may com-
promise rigor. Approaches that prioritize formalization and
structure to ensure consistency, correctness, completeness, and
traceability can enhance rigor but may impede agility.

https://orcid.org/0009-0003-4178-8076
https://orcid.org/0000-0003-3137-8690
https://orcid.org/0000-0001-7558-1434
https://orcid.org/0000-0002-3319-5006
https://orcid.org/0000-0003-4927-2755


For example, a project developed by a small group of JPL
engineers is able to develop a complex mission in months,
demonstrating agility. However, this face-to-face, non-rigorous
communication style will not scale up to globally distributed
teams of hundreds of engineers.

B. MBSE Methodologies at JPL

To handle these competing requirements and more effi-
ciently support system engineers, JPL established the Inte-
grated Model-Centric Engineering (IMCE) project in 2010
to develop tools, methodologies, training, and documentation
for MBSE [6]. This led to the internal Computer Aided
Engineering for Spacecraft System Architectures Tool Suite
(CAESAR) platform, used on the Mars2020, Europa Clipper,
Psyche, and Sample Return Lander projects at JPL.

Here, we introduce an open-source version of CAESAR
called openCAESAR1. It is an MBSE methodology and frame-
work developed at JPL to support systems engineers in the
development, management, integration, deployment, and op-
erations of complex models. It balances between an agile ap-
proach suitable for the challenges of the JPL environment and
a rigorous methodology suitable for developing complex sys-
tems (and systems-of-systems). At the heart of openCAESAR
is the Ontology Modeling Language (OML) [7]. OML allows
engineers to directly specify their knowledge as ontologies
with precise syntax and semantics, without the usual incidental
complexity found in semantic web technologies and tools [8].
These ontologies then form the backbone of the openCAESAR
MBSE methodology, enabling systems engineers to consider
rigor and agility across seven systems engineering architectural
functions: representation, authoring, federation, configuration,
integration, analysis, and reporting. We demonstrate open-
CAESAR and how it strikes a balance between agility and
rigor in MBSE through the Kepler16b example, and present
lessons learned from past JPL projects.

II. AGILITY AND RIGOR IN MBSE METHODOLOGY
FUNCTIONS

JPL’s experience across past projects has led to the iden-
tification of seven key MBSE functions to be well-supported
in MBSE methodologies and frameworks [6]: representation,
authoring, federation, configuration, integration, analysis, and
reporting. Here we discuss at the conceptual level these
functions identified by JPL and their relation to the competing
concepts of agility and rigor. In Section III, we explain at the
technological level how openCAESAR supports each of these
methodology functions using a running example.

A. Meaning of Agility and Rigor

Before discussing the MBSE methodology functions, this
section introduces our meanings of agility and rigor. The
essence of these two terms is that agility is about the ability to
reconfigure and adapt the system and the development process
as needed, while rigor is about ensuring that the system and
development process are sound. In the context of MBSE,

1https://www.opencaesar.io/

agility is the ability to adapt the MBSE models and asso-
ciated analysis and reporting to reflect unique project details
with minimal effort. Rigor instead includes the precision and
accuracy or general lack of ambiguity.

We have selected the terms ‘agility’ and ‘rigor’ based on our
understanding, supported by the discussion of Tolentino and
Wood [9]. However, synonyms may be preferred by readers
such as “changeability” and “robustness” [10].

1) Agility: Our understanding of agility is reflected in a
quote from Willett et al. [11]: “Agility is the ability to move
quickly and easily; speed with quality.”. More precisely, they
identify four areas where agility is relevant for systems engi-
neering [11]: a) agile systems-engineering (process), b) agile-
systems engineering (technology), c) agile-operations (envi-
ronment), and d) agile-workforce (people). In the context of
MBSE, these areas are broadly relevant [12]. However, MBSE
methodologies must also be able to support concrete functions
such as supporting stakeholder collaboration, communication,
and on-boarding [3] to achieve this agile-workforce.

Notably, these agility concerns may not be adequately
addressed in current MBSE tool-chains [13]. Ma et al. report
that only 53% (138/260) tool-chains address interoperability,
43%(112/260) address reusability, and 43% (113/260) address
scalability. Modularity and reusability, and tool dependency
and integration are also challenges for adopting MBSE [14].
Another agility aspect specific to system engineering is that
systems and processes can be project-specific. At JPL, every
project will have some unique aspects including novel system
capabilities. Thus the MBSE development process cannot
move “quickly and easily” without addressing these concerns.

2) Rigor: MBSE relies upon the concept of rigor which sits
at the heart of the systems engineering process [9]. Ramos et
al. state that MBSE is the “formalized application of mod-
eling principles, methods, languages, and tools to the entire
life-cycle of large, complex, interdisciplinary, sociotechnical
systems” [15], implying that rigor must be maintained in both
the system and its development process [16]. The related prop-
erties “reliability” and “safety” are most often mentioned in
MBSE tool-chains [13]. These dimensions of rigor, including
traceability, consistency, correctness, and completeness are
therefore applicable to the system and also to the system de-
velopment process itself. At JPL, traditional testing techniques
are no longer sufficient as missions become more complex,
demanding increased rigor. For example, mission functions
can no longer be tested on Earth, meaning that discovering
flaws late in the development process carries major risks.

3) Trade-offs between Agility and Rigor: Tolentino and
Wood discuss how the concepts of agility and rigor can be at
odds in systems engineering [9]. They identified three areas of
conflicts between agile development and systems engineering:
documentation, prioritization of non-functional requirements
versus development speed, and change management. For ex-
ample, improving documentation increases traceability and the
ability to perform trade-off analyses (improving rigor), but the
process of producing documentation can be slow and inflexible
to change (decreasing agility).



In MBSE, these aspects also have to be balanced. For ex-
ample, Denil et al. identify one solution whereby rigor can be
addressed during “sprints” (fixed time-periods in development)
in an agile process [17]. During these periods, more rigorous
processes can be integrated, with the final sprint fully adhering
to applicable safety standards.

B. MBSE Methodology Functions at JPL

This section explains the JPL MBSE methodology functions
and how they impact the agility and rigor of the system and
the system development process. Section III offers technical
details of how openCAESAR supports these functions.

1) Representation: In MBSE, representation refers to how
information is structured and organized to support the system
design and development process. Representation entails identi-
fying the concepts, relationships, and constraints that comprise
the system’s architecture such that stakeholders can easily un-
derstand, communicate, and analyze. Representation reduces
the cognitive load in system design as it determines the choice
of the initial modeling constructs, how they are depicted,
composed, combined, extended, fragmented, and configured
to possess certain system characteristics while ensuring logical
consistency and correctness. Thus, as the model representation
becomes more expressive, concise, and effective in capturing
the system requirements, then this enables a more efficient and
effective system engineering process.

The link between representation and agility is that good
representation enables a clear and structured view of the
system, enables the team to quickly identify areas of the
architecture that may need to be improved, and to experiment
with different design options.

On the other hand, rigor is related to how representations
should be sufficiently unambiguous and self-explanatory that
they can be safely interpreted by many users. They should
support lucidity (i.e., clarity and simplicity), laconicity (i.e.,
brevity and conciseness), soundness (i.e., correctness and
consistency) and completeness (i.e., coverage and comprehen-
siveness). This helps ensure the system behaves as intended
to meet performance, reliability, and safety requirements.

2) Authoring: The model authoring function facilitates
what users write and mean to say. In system modeling, this
entails following a methodology that supports using predefined
representations of specific vocabularies and viewpoints to
create and customize models that accurately describe systems
from a set of supported domains.

For agility, model authoring can accelerate model creation
and customization through tool features such as mixed con-
crete syntax (textual and visual), multi-level views, model
layers, provider-specific view-points, and supporting collab-
oration, communication, and rapid feedback. Additionally, the
ability to scale and extend the models allows for flexibility
and adaptability in response to changing requirements.

Authoring has rigor when the models created are ensured
to be accurate, consistent, and adhere to the specified method-
ology and predefined representations. Model authors can then
know that the models accurately represent the system being

modeled and adhere to any relevant standards or regulations.
Additionally, verification methods provide accurate and timely
feedback, enhancing rigor for the modeling process through
quick identification and resolution of model issues.

3) Federation: Model federation refers to the ability to
organize models and information flow between parts of the
system to automate the project’s workflow. It involves breaking
down the system model into well-defined sub-models and
organizing information in separate repositories to match that
content’s ownership. Thus, the model organization reflects
the process organization to avoid collisions of authority.
This approach enables parallel work on the system without
unintended impacts. Breaking down the system model into
fragments can introduce challenges by making it more fragile
and harder to coordinate changes. However, this is preferable
to having a single model which can make it hard to give
authority or establish traceability. Therefore, federation allows
for the integration of information and models from different
sources to create a complete system model while maintaining
its integrity and traceability.

Model federation increases agility by allowing stakeholders
to collaborate on the system at the same time and rapidly
iterate and adapt, which is critical in a large organization such
as JPL. Model federation can also support rigor by breaking
the model into sub-models and repositories to make it easier to
check the model’s consistency or quality through specific tech-
niques targeted for each type of model. Traceability throughout
system development is also enhanced by assigning models
and repositories to specific owners. These owners are then
responsible for coordinating development, verification, and
reporting for their models.

4) Configuration: Configuration refers to the ability to
track various versions of valuable information produced by
users during authoring, analysis and reporting. This informa-
tion may have different variants which must be related to each
other and clearly communicate to authors and stakeholders.

An agile systems engineering solution thus requires a con-
figuration management system (CMS), resembling Git func-
tionality, to streamline creating new versions, reviewing and
approving new changes, handling conflicting versions, and
merging the changes into a baseline branch.

In addition, rigor in configuration is required to ensure con-
sistency and data integrity of the information across versions.
Consistency should also be maintained for all models across
the entire system with every change, which is challenging
to achieve. The CMS should detect conflicting information
provided by authors and provide effective conflict resolution
mechanisms. This requires an effective way to measure and
report differences between model/report versions and to rec-
oncile those differences through a merge/resolution process.

5) Integration: The systems engineering development pro-
cess is iterative and incremental, where models produced
by users during authoring is constantly analyzed, and the
analysis results are occasionally reported and published. This
information authoring, analysis, reporting process requires the



integration of multiple tools to perform continuous operations
as new data is added.

For an integration process to be both agile and rigorous,
there are several challenges. First, the entire process should be
triggered automatically with no user intervention. The second
challenge relates to how dependencies are managed between
the information models that describe different perspectives of
a system. For example, a model describing an electrical circuit
could depend on information provided in a model authored by
a mechanical engineering team. The integration between the
two models should ensure future versions of these models do
not introduce inconsistencies.

Another challenge involves tool interoperability throughout
the entire integration pipeline. Adapters must be created to
render interoperability seamless and increase the agility to
adopt new tools. This is a challenge when multiple authoring,
analysis and reporting tools are used, which is common for
complex systems that cover multiple domains. Third-party
tools may also require constant updates as their APIs change,
or their use is constrained due to different licensing models.

6) Analysis: A key aspect of system modeling is to an-
alyze the produced models to ensure their rigor, in terms
of consistency, completeness, and correctness. Consistency
analysis checks that the descriptions of the system do not
contain conflicting statements and that they are conform to
any meta-models defined. The completeness analysis verifies
that the system is adequately described in terms of its com-
ponents, properties, and relationships. Correctness analysis
checks whether a description satisfies its functional and non-
functional requirements.

The modeling language choice directly impacts the level of
rigor possible. Greater levels of rigor can be attained through
the use of formal languages with unambiguous semantics.
Whenever it is not possible to fully verify the accuracy of the
information, this can be encoded in the model, or engineering
margins and a periodic review process can be implemented to
ensure that the uncertainty is sufficiently managed. To support
agility during analysis, tools are also needed such as model
querying, model simulation and execution, solvers, and model
checkers. Supporting analysis tools can be challenging due
to the complexity of these tools and the associated learning
curve. The repeatability of the analysis is also essential for
the purposes of auditing and regulatory compliance.

7) Reporting: In systems engineering, reporting is an ac-
tivity that takes place throughout the entire life cycle of the
system modeling, including authoring and analysis. Reporting
enables effective review by tailoring the information presented
to a user’s expertise. This can include reporting identifiable
discrepancies or just projecting model information into a view
that allows readers to see the information in context or in
a viewpoint they understand. These reports may include a
combination of text, graphical, and analytical representations
(e.g., tables, diagrams, charts, etc.). An agile reporting system
should allow users to view reports in a variety of ways
depending on their expertise. It should also be flexible enough
to integrate with different reporting and analytical platforms

used in other fields via APIs or adapters.
Reporting is subject to rigorous requirements. The gener-

ated reports must be factual, consistent, complete, and correct.
Reports should also enable requirement traceability by map-
ping the models to the appropriate requirements or products.
At JPL, reporting is a critical activity because of government
requirements to produce and maintain persistent records.

III. SUPPORTING RIGOR AND AGILITY IN OPENCAESAR
This section explains the openCAESAR MBSE methodol-

ogy and framework in the context of rigor and agility. We
overview openCAESAR and detail the Kepler16b running
example. Then, we use this example to demonstrate how the
openCAESAR methodology and framework supports the seven
MBSE functionalities described in Section II-B.

A. Introduction to openCAESAR
Figure 1 shows the openCAESAR architecture, emphasizing

three categories of information functionalities involved in
the end-to-end workflow from information-producing users
(authors) to information-consuming users (stakeholders).

Fig. 1. Architecture of openCAESAR.

For authors unfamiliar with semantic web practices, the
architecture accommodates using application-specific work-
benches to provide domain-specific interfaces for specialized
application domains. Such a workbench maps the application-
specific model into the common Ontological Modeling Lan-
guage (OML)-based representation using an application-
specific adapter. The representation, configuration, and inte-
gration functionalities relate to managing information repre-
sented and configured in OML. A key focus of this stage is
ensuring the logical consistency of the configuration of OML
models to ensure validity of all analyses downstream. The
analysis and reporting functionalities then focus on producing
consumable artifacts for users, i.e. stakeholders. For authoring
and cross-referencing content in a federated context, models
use abbreviated and unambiguous Internationalized Resource
Identifiers (IRIs) placed in unique namespaces.

Figure 2 shows the two openCAESAR methodology phases.
First, the methodologist creates or imports the required vocab-
ularies. Then, viewpoints are created based on these vocabu-
laries and authoring tools are built to express these viewpoints.
The second phase is an iterative development process where
the methodologist works closely together with authors and
stakeholders to continuously build and refine the vocabularies,
descriptions, queries, and reports required for the project.



Fig. 2. openCAESAR methodology with two development phases.

B. Kepler16b Running Example

Kepler16b is an exoplanet orbiting the binary star system
Kepler16 approximately 245 light-years from Earth2. Using
the lessons and tools from past JPL projects, NASA JPL
is describing an illustrative mission ‘Kepler16b’ to act as a
case study for the openCAESAR platform3. There are two
main spacecrafts: an orbiter and a lander. Each of these
have scientific missions to accomplish, such as characteriz-
ing the atmosphere, environment, and gravitational field. To
accomplish these missions and objectives, the spacecrafts are
made up of subsystems such as electrical, thermal, telecom,
mechanical, and propulsion and their components. Thus, this
example represents a complex system requiring an agile and
rigorous MBSE methodology and tool support.

C. Representation

The core functionality of openCAESAR allows authors
to describe their system of interest by using OML as the
key formalism for representing domain knowledge in models.
Past work discusses technical OML details [7], while here
we provide high-level explanations focusing on how OML
supports agility and rigor.

As with any space mission, the Kepler16b example is multi-
disciplinary, involving low-level concerns such as mechanical
components and high-level concerns such as mission oper-
ations. OML addresses this heterogeneity by first creating
specialized vocabularies for each concern, then using them in
the descriptions. Kepler16b components represented in OML
include an orbiter mission (launch system, spacecraft, ground
datasystem), a lander mission (launch system, spacecraft,
ground data system), and a mission operations system.

1) Vocabularies and Descriptions: A vocabulary model
(similar to OWL’s T-box) defines the terms (classes and
properties and their restrictions) and inference rules required to
describe a particular domain. Through layered specialization,
these vocabularies can be targeted towards different domains
and levels of abstraction. For example, in Listing 1, the

2https://exoplanets.nasa.gov/exoplanet-catalog/1814/kepler-16b/
3Available at https://github.com/opencaesar/kepler16b-example

concepts of a Mission and an Objective are defined along with
a Pursues relation between them.

A description model (similar to an OWL A-box) uses one
or more vocabularies to describe knowledge in a given context
at a given time with a set of instances (individuals) of some
types and their (property value) assertions. Unlike classes,
instances cannot be specialized or restricted further. Therefore,
description models should be used when the intent is to
describe (individual) instances in the real world that we want
to reason on. For example, the missions description model in
Listing 2 asserts that there exists a Lander Mission mission
which pursues the characterize-atmosphere objective.

Listing 1. Excerpt of the OML missions vocabulary model.
1 @ r d f s:label "Mission"
2 c o n c e p t Mission :> b a s e:IdentifiedElement
3 @ r d f s:label "Objective"
4 c o n c e p t Objective :> b a s e:IdentifiedElement
5 @ r d f s:label "Pursues"
6 @dc:ˆdescription "A Mission pursues >=0 Objectives."
7 r e l a t i o n entity Pursues [
8 f r o m Mission
9 t o Objective

10 f o r w a r d pursues
11 r e v e r s e isPursuedBy
12 a s y m m e t r i c
13 i r r e f l e x i v e
14 ]

Listing 2. Excerpt of the OML missions description model.
1 c i lander : m i s s i o n:Mission [
2 b a s e:hasIdentifier "M.02"
3 b a s e:hasCanonicalName "Lander Mission"
4 m i s s i o n:pursues o b j e c t i v e s :characterize-

atmosphere
5 m i s s i o n:pursues o b j e c t i v e s :characterize-

environment
6 m i s s i o n:deploys c o m p o n e n t s:lander-launch-system
7 m i s s i o n:deploys c o m p o n e n t s:lander-spacecraft
8 m i s s i o n:deploys c o m p o n e n t s:lander-ground-data-

system
9 m i s s i o n:deploys c o m p o n e n t s:m i s s i o n -operations-

system
10 ]

OML also supports the ability to multi-classify instances
in description models. This enhances agility by allowing
classifying instances with types belonging to different vocab-
ularies in the same or different descriptions (e.g., classifying
orbiter-launch-system as a mission:Component in components
description and as a mechanical:MechanicalComponent in
masses description). Thus, models can be smaller and more
coherent, with concerns separated into different domains.

Unlike OWL, which allows mixing T-box and A-box state-
ments in the same ontology, OML enforces rigor by putting
them in either vocabulary (T-box) or description (A-box)
ontologies. This separation makes it easier to establish whether
an ontology is representing the domain(s) itself, or the real-
world instances within the system-of-interest. This duality
of modeling is very powerful and allows a simpler and
homogeneous multi-level modeling stack.

Figure 3 shows the vocabularies and descriptions in the Ke-
pler16b example, along with the extends and uses relationships

https://exoplanets.nasa.gov/exoplanet-catalog/1814/kepler-16b/
https://github.com/opencaesar/kepler16b-example


jcgm/vim4

iso.org/ 
iso-8000-1

vocabulary/ 
base

vocabulary/ 
mechanical

vocabulary/ 
mission

kepler16b/
interfaces

kepler16-b/
objectives

kepler16b/ 
components

vocabulary/ 
bundle

vocabulary/ 
operations

OML

M3 
Meta-Metamodel

M2 
Metamodel

M1 
Models

Vocabularies

Descriptions iso.org/ 
iso-8000-4.1

kepler16b/ 
requirements

kepler16b/ 
mass-properties

kepler16b/
bundle

kepler16b/
junctions

kepler16b/
missions

Legend
Extends

Uses
Includes

Ecore

instanceOf

instanceOf

Fig. 3. Vocabularies and descriptions in the Kepler16b example

between them. Bundles (described below) can also include
other ontologies. Both vocabularies and description ontologies
are instances of the OML language, which is itself an instance
of the Ecore layer. This is represented on the right-hand side
of Figure 3 where vocabularies and descriptions are at the M1
model level and OML is placed at the M2 metamodel level.

2) Description Logic: OML ontologies have description
logic (DL) semantics, which allows using logical reason-
ers (like Pellet) to check the satisfiability of types (that a
type can be instantiated) in vocabularies, the self-consistency
of descriptions (the lack of logical contradictions), and the
consistency of descriptions with (the semantics of) the used
vocabularies. In the Kepler16b example, this allows detection
of logical inconsistencies that can be introduced by mistake,
such as a spacecraft component modeled as containing itself.

The DL semantics also allows for inferencing of entailments
(axioms that are inferred from others via rules) from assertions
(what users declare to be true). This allows assertions to be
very concise, minimizing the work of systems engineers, while
generating a much richer set of entailments to be used for
analysis. In addition to the inference rules built into DL, OML
allows specifying custom inference rules in vocabularies to
extend the set of analysis entailments even further.

Entailments help simplify analysis via SPARQL queries
(see Section III-I) since we can shift some of their pattern
matching logic to inference rules, leaving them more simple
and direct. Queries can then match instance types directly
and not have complex type checking logic. For example,
in Kepler16b, classification reasoning can entail all possible
Component types for a given instance. A query can then select
all instances of type Component despite the fact that such
instances were typed by SpacecraftComponent.

3) Open-world versus Closed-world: The logical semantics
of OML support two kinds of assumptions. The open-world
assumption is extremely agile as it states that a statement
may be true irrespective of whether or not it is known to
be true. For example, a vocabulary could define a concept
called Component with no supertypes, and another vocabulary
can add a supertype IdentifiedElement to it. This can also be

performed with instances in description models. This modeling
agility is not possible in representations with closed-world
semantics (e.g., MOF and UML) since types and instances are
closed and a new type or instance would have to be defined.

While making an open-world assumption is very useful
for agility, it cannot be used to perform verification, which
requires a closed-world assumption, similar to schemas and
metamodels. OML can bundle both vocabularies or descrip-
tions. A vocabulary bundle aggregates a set of vocabularies and
partially closes the world on them using a special algorithm.
In particular, extra assertions are added such that types without
a common subtypes are marked as disjoint. This enhances
rigor by preventing an instance in a description from being
typed by disjoint types at the same time, which would be
acceptable under an open-world assumption. Similarly, OML
supports description bundling with an associated algorithm to
close the world and reason about the cardinality of values. This
algorithm adds checking the minimum cardinality restrictions
that are not checked by the DL reasoner (which checks the
maximum cardinalities) due to the open world assumptions, as
the lack of values does not necessarily mean they do not exist.

D. Authoring

Once a set of OML vocabularies are defined, they can
be used in OML descriptions that use those vocabularies’
terms. openCAESAR supports methodology-aware OML au-
thoring tools through adapters for existing systems engi-
neering tools.These adapters translate information back and
forth between a non-OML authoring tool and OML, using
openCAESAR’s authoring tool and OML APIs. This allows
for greater agility in using tools by providing an adapter.

openCAESAR also supports OML authoring through OML
workbenches: Rosetta (Eclipse-based) and Luxor (VSCode-
based). These workbenches allow modeling with OML directly
using its textual grammar formalized in EBNF. EBNF frame-
works like Xtext and Langium can then generate APIs to load
and save models in that grammar.

In contrast, MOF’s textual syntax, called XMI, is described
with informal mapping rules from MOF to XML, which can
be used to infer an XSD schema for a MOF-based language.
This method makes the process of obtaining the XSD schema
error-prone, and the mapping rules provide several variability
points leading to interoperability issues4.

Rosetta also allows authoring through OML’s graphical
syntax as shown in Figure 4, and can be used to develop
methodology-specific UI viewpoints that makes the experience
of the authors much easier. For example, Figure 5 shows a
table-based viewpoint for editing missions. Viewpoints can
support various UI widgets, and address methodology-specific
functional and non-functional concerns.

E. Federation

openCAESAR organizes OML models in different Git-
based repositories to support federated work in a project.

4For example, see https://www.omgwiki.org/model-interchange/

https://www.omgwiki.org/model-interchange/


Fig. 4. A subset of the mission vocabulary in OML graphical syntax

Fig. 5. A tabular view for authoring mission objectives

This enhances both agility and rigor by separating concerns
based on authority, concern, and tool boundaries, improves
scalability by allowing for focused models, and enables col-
laborating in a parallel and asynchronous manner without
unintended impacts. As described in the configuration section,
these models can then be integrated by repositories declaring
dependencies on artifacts published by other repositories.

In the Kepler16b example, there exists a dependency on an
OML library called core-vocabularies that provides reusable
vocabularies like the well-known Dublin Core, OWL, RDFS,
and XMLSchema. Such a library is managed in a separate
Github repository and published to MavenCentral. The Ke-
pler16b project declares a version dependency on this library.
The build process then downloads a read-only copy and makes
it available for the project’s own OML models.

Further, ontologies can thus be organized in multiple folders
in an OML project. For example, ontologies could be orga-
nized in different folders based on criteria (manually authored
vs generated by tools, pertaining to a particular subsystem,
main information vs example information, etc.). The agility
to do this organization comes from the OML syntax allowing
statements about elements (even ones defined elsewhere) to
be stated in multiple ontologies. That is, a vocabulary or
description can import another and add extra statements about
members of that ontology, effectively extending the imported
members. This is not necessarily the case for other modeling
languages that rely on statements about a subject being nested
under the subjects in a single model.

The Kepler16b example heavily relies on ontology import-
ing. The description is organized into multiple ontologies that
import each other to keep them smaller and easily reusable. For
example, the components defined in one ontology is imported
by others to describe component masses and their interfaces.

F. Configuration

Many system modeling tools have their own Content Man-
agement System (CMS) capabilities that have some (but not
all) of the required functionality. In the case of openCAE-

SAR, OML models are textual files which can be stored in
Git repositories. This leverages Git’s powerful configuration
management capabilities and provides users with familiar soft-
ware engineering features such as providing tracking revisions
through commits and tags, allowing parallel and exploratory
work through branches, and code review before merging
changes onto a protected main (baseline) branch.

While using Git as a CMS facilitates the revision, collabo-
ration, and review use cases, this does not address the release
and dependency management use cases. Artifact management
systems (AMS) including Maven and Ivy allow publishing
artifacts to repositories and making them accessible as de-
pendencies of other artifacts. These capabilities allow an agile
tool-independent approach to dependency management.

openCAESAR fully exploits this dependency management
capability in OML projects, where every project declares its
own version as well as versions of its dependencies. The
versioning scheme used is semantic versioning5, where a
version is made up of “major.minor.patch” components. Using
these scheme clearly communicates the intent of a new version
to its downstream adopters. For example, dependency version
ranges such as 1.2.+ indicate that only patch updates can
be used, or the range + will receive all updates for continual
tracking of a dependency. The Kepler16b example declares
a dependency on the core-vocabulary artifact and specifically
version 5.+, i.e., fixing the major revision to 5 while requesting
the latest minor release.

G. Integration

In openCAESAR, integration is about ensuring that each of
the models, tools, analyses, and reports are correctly working
together, in the style of DevOps CI/CD [5]. Typically,
the engineering knowledge is federated across authority and
concern boundaries. This results in multiple models being
managed and published in different CMS/AMS repositories
with cross dependencies declared between them.

openCAESAR makes it easy for development to proceed in
parallel with frequent integrations along the way. It utilizes
Gradle (for analyses orchestration), Maven (for releases/de-
pendencies with semantic versions), Docker (for provisioning
CI environments) and CI tools (for running the entire process
upon a change to the Git repo). The continuous integration
process starts with a change pushed to a Git repository, which
triggers an analysis pipeline to analyze the change. In this
pipeline, fresh read-only copies of the dependencies are down-
loaded from their repositories, the models are transformed into
inputs suitable for analysis tools, the analyses is run to produce
reports, and the reports are published for review.

As with usual CI principles in programming, issues with
openCAESAR models, tools, analyses, or reports will be
detected and made visible in this process. The responsible
party can then address the problems in a subsequent change
to trigger the CI/CD process again. This enforces rigor by
uncovering any problems (in the models themselves or their

5https://semver.org/

https://semver.org/


dependencies) as soon as possible. A change that is a candidate
for release can be tagged in Git to trigger the extra steps
of packaging the system models, adding the version to the
package, and publishing it to an AMS repo. Once published,
it can be used as a dependency of another model.

H. Analysis

In openCAESAR, analysis happens at two levels. First, the
logical consistency of the models is checked using OML and
description logic reasoners. Second, other analyses investigate
other properties of the system. OML models can easily be
checked for logical consistency with an off-the-shelf descrip-
tion logic (DL) reasoner, as noted in Section III-C. This check
is typically done very early in an analysis pipeline as in the
Kepler16b example CI pipeline. Completeness checks can be
encoded in a vocabulary directly using minimum/exact car-
dinality restrictions on properties. They can also be captured
using libraries of well-formedness rules that query consistent
models. The advantage of the latter is the ability to separate
those two concerns, and the ability to use other analyses
frameworks than a DL reasoner.

Rigorous analyses involving functional and non-functional
requirements can be performed using various frameworks
including solvers, simulators, etc. depending on the nature of
the description (uses mathematical equations, has operational
semantics, etc.). openCAESAR uses Docker and Gradle for
analysis orchestration. It allows fully declaring (and managing)
the environment used for analysis including the version of
analysis tools that will be used.

I. Reporting

openCAESAR provides frameworks to develop viewpoints
from OML repositories to facilitate reporting tasks. These
viewpoints can either collect data from the OML source
models directly, or from data that was produced by analyzing
those sources. Steps in an openCAESAR analysis pipeline
dedicated to producing views or reports include queries to
fetch the designed data patterns, reductions to transform them
into a format closer to the view, and finally renderings to
visualize them as static documents or interactive viewers.
Such views are tagged using the same Git tag of the source
OML model and published to a repository that makes them
accessible to stakeholders. For example, one SPARQL query
in the Kepler16b example produces a table for components in
the system along with their mass in kilograms. As shown in
Figure 6, a short Javascript code snippet using the D3 library
can then visualize the masses and allow for interaction6.

A web server can index these reports and makes them
accessible and searchable. Stakeholders will be able search
those views by keywords or tags, and can launch them to
view them, comment on them, or download them. The full
provenance of the views is also traceable so that stakeholders
can determine the specific versions of the OML models and
analysis tools involved in the report.

6http://www.opencaesar.io/kepler16b-example/

Fig. 6. An interactive mass roll-up visualization in an openCAESAR report

The openCAESAR methodology and framework thus dra-
matically improves the change request process from being ad-
hoc and unrepeatable to a rigorous and systematic one. Despite
the rigor of explicit processes, the user is also afforded agility
by being able to easily define additional queries and reports
on the system, and having those reports efficiently distributed
to interested stakeholders.

IV. LESSONS LEARNED AND OPEN CHALLENGES

This section discusses lessons learned from applying open-
CAESAR to past JPL projects, along with open challenges.

a) Strong Requirements for Agility and Rigor: As de-
scribed through this article, JPL has demanding requirements
for agility and rigor from both MBSE methodologies and tools.
On the rigor side, the process from requirements to design
requires time-intensive expertise from information architects.
On the agility side, there is no silver bullet and any frame-
work/methodology must be adapted to account for different
contexts, teams, and stakeholders.

Challenge: Developing good and reusable vocabularies is
very challenging especially in a multi-domain environment.
OML helps to address this by being able to import core
ontologies to form a layered ontology approach, but still the
meaning of terminology and concepts may evolve over time.
This requires enormous effort to define and describe concepts
in a particular context and ensure that the meaning is retained
throughout the project lifecycle.

b) Improving Adoption: A key lesson learned throughout
the application of openCAESAR in JPL was the power of
DevOps and CI/CD practices that can be applied to models
and their ecosystem. These practices are common-place from
software engineering but have not yet reached saturation across
MDE and systems engineering. openCAESAR is an excellent
starting point for these practices, but more can be done.

Challenge: Experiences showed that it was sometimes dif-
ficult to move to the openCAESAR methodology/framework
from existing practices. Some teams were more ready than oth-
ers. Analyses and maturity level assessments will be required
to systematically determine when openCAESAR is beneficial
for a project/team. This assessment must also take the use of
MBSE existing tools into account, to ensure that productivity
and experience is not lost during the transition.

c) Stakeholder Engagement: openCAESAR has a strong
focus on providing analyses and reports for non-technical
stakeholders, due to the nature of projects at JPL. This requires
overcoming technical challenges to be able to create and

http://www.opencaesar.io/kepler16b-example/


deploy queries and reports such that non-technical personnel
could develop their own views onto the system and understand
the impact of changes.

Challenge: Further work is required to make change re-
quests easy to understand for reviewers, such as being able to
understand the changes (“diffs”) at a semantic level instead of
a syntactic level [18]. This is crucial to allow non-technical
personnel to understand the change. One current approach is
that differences in the derived reports are presented alongside
a change request. This strategy should be further integrated
technically such that a stakeholder can dynamically create new
views to understand a change at the time of a change request.

d) Standardization and Integration: OML was designed
to be a language for capturing general descriptive models as
opposed to other languages that are designed to enable certain
particular kinds of analysis (e.g., Modelica). As a general
modeling language, OML has broad expressiveness but has
to be adapted (through vocabularies) to say anything.

Challenge: JPL has produced a set of vocabularies to
describe specialized concepts and relations but these may not
be generalizable to all system engineering since the processes
for engineering models differs greatly between industries and
organizations. Therefore, as a general language it cannot
compete with specialized languages like Modelica in those
particular analytical domains, or in expressing geometry such
as in CAD tools. However, if one needs a system model to
describe the architecture of a system and explain how the CAD
model relates to the Modelica model, OML provides a flexible
and adaptable way to do it.

Challenge: Enormous effort is required to normalizing dif-
ferent engineering tools into standard ontologies, as SysML
has one vocabulary while DOORS has another. In the open-
CAESAR framework, adaptors can be fragile where it is dif-
ficult to perform back-and-forth editing and analysis between
OML and other tools. One solution is to utilize chains of model
transformations. However, it is unclear how to perform this in
an agile and rigorous manner, especially to provide assurance
that the model transformation has been correctly performed.

Challenge: Authors need to recognize their content in other
formalism or tools. There is thus a need for traceability such as
provide Internationalized Resource Identifiers (IRIs) to provide
a Digital Thread throughout the project and across tools.
However, this requires further development to lower cognitive
effort and specify the precise semantics of element traceability.

e) Aligning openCAESAR/OML with SysML: SysML is
a well-used MBSE language as seen in Section V. However,
the ontological and text-based approach employed in open-
CAESAR provides a different balance of agility and rigor. In
particular, the clean semantics of OML, formal consistency
checks, and ability to quickly query models and report on
them provides clear advantages over SysML.

Challenge: JPL is in discussions with OMG on how to inte-
grate SysML at a deep level into the openCAESAR framework
to obtain the best of the OML and SysML worlds. One solution
is to build an OML ontology of SysML to aid the creation

of adaptors. However, the semantics of SysML do not map
directly onto the formal semantics of OML.

V. RELATED WORK

Talentino and Wood [9] discussed their experience support-
ing a team of systems engineers and software developers in
the development of a large number of naval applications. The
authors argued that the main areas of conflicts between the
systems engineering and the agile software methodologies are
related to documentation rigor, prioritization of non-functional
requirements such as compliance, and openness to change.

Navas et al. discuss how a model-based approach provides
agility in the context of Capella/Arcadia [12]. An iterative and
incremental development process is discussed whereby mod-
els are iteratively refined and verified between development
sprints. However, they mention that system-level verification
is not integrated into a continuous automatic process as in the
openCAESAR framework.

Jenkins and Rouquette [19] argued that while SysML is a
rich and flexible modeling language for systems engineering,
it lacks the rigor and semantics required for logical reasoning
in system engineering such as verification of consistency
and satisfiability analysis. They propose combining SysML
with the Web Ontology Language (OWL) through profiling
and model transformations. The goal is to enhance SysML
semantics with OWL’s formal logic, and improve the adop-
tion of ontology-based languages in systems engineering by
leveraging SysML’s graphical notations and tool support.

Krupa [20] applied an agile process to the design of a flight
control system, showing that combining agility with SysML
for modeling the system artifacts provides many advantages
over traditional systems engineering processes, such as the
ability to develop specifications that meet the system require-
ments and customer’s needs. The author also showed that the
incremental nature of agile processes, where each iteration is
verified against requirements, results in improved design.

Do and Cook report on a SysML-based MBSE approach
for designing a Ground-Based Air and Missile Defence sys-
tem [21]. They report SysML-based MBSE supports flexibility
in modeling, but that this flexibility imposes a need to carefully
build the model and SysML diagrams to fit the project.

Spangelo et al. apply SysML-based MBSE to an example
cube satellite mission FireSat [22]. They demonstrate the
multi-disciplinary nature of space-based missions like FireSat
and Kepler16b requires extensive domain modeling and sepa-
ration of concerns between physical and logical components.

Rountree reports on the MBSE process as applied to the
NASA Mars Ascent Vehicle [23]. A combination of SysML,
MagicDraw, and Doors Next Generation were utilized to cap-
ture the requirements of the system. Similar to openCAESAR,
specialized viewpoints were produced to separate concerns,
with web-based reports produced for stakeholders.

Boggero et al. present an MBSE architectural framework
for SysML for structuring the stakeholders, needs, and require-
ments of a complex aeronautic system [24]. This architectural
framework focuses on providing the agility to define and



model complex systems. Similar to openCAESAR, enhanced
agility is achieved through the extensive use of ontologies and
viewpoints, packaged as the AGILE4Profile SysML profile.

Hennig et al. provide a detailed discussion on the applica-
tion of an ontology for satellite design [25]. The ontology was
created in the OWL2 ontology format manually from a UML
system model. While this approach allowed for consistency
and verification checks, there were issues identified by em-
ploying OWL2: a) closed-world checks could not be applied,
b) data could be modeled in the A-Box which was out-of-scope
of the T-Box, c) no built-in part-of/containment/aggregation
relationships, and d) difficulty reasoning about numeric values.
OML and available OML libraries address these issues.

These studies demonstrate that while other MBSE ap-
proaches are feasible, limitations exist either in their agility or
rigor. In contrast, the openCAESAR methodology and frame-
work attempts to bring together the best of these approaches
to provide sufficient agility and rigor for MBSE practitioners.

VI. CONCLUSION

This article has discussed the openCAESAR MBSE frame-
work and methodology developed at JPL. The seven core
MBSE functionalities identified by JPL [6] were discussed
in the context of agility and rigor: representation, authoring,
federation, configuration, integration, analysis, and reporting.
The Kepler-16b case study was then used to explain how
openCAESAR supports these functionalities. Lessons learned
from past JPL MBSE projects using openCAESAR were
presented along with future challenges.

Future Work: JPL is currently enriching the Kepler-16b
example and performing further open-source development of
openCAESAR. To encourage the adoption of openCAESAR,
JPL is also creating a diverse ecosystem of community of tool
developers and users (e.g. [26]) through the development of
seminars and workshops.

ACKNOWLEDGMENT

The research described here was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration (80NM0018D0004).

REFERENCES

[1] A. M. Madni and M. Sievers, “Model-based systems engineering: Moti-
vation, current status, and research opportunities,” Systems Engineering,
vol. 21, no. 3, pp. 172–190, 2018.

[2] K. Henderson and A. Salado, “Value and benefits of model-based
systems engineering (MBSE): Evidence from the literature,” Systems
Engineering, vol. 24, no. 1, pp. 51–66, 2021.

[3] T. Huldt and I. Stenius, “State-of-practice survey of model-based sys-
tems,” Systems Engineering, vol. 22, no. 2, pp. 134–145, 2019.

[4] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al., “The
agile manifesto,” 2001.

[5] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1–35, 2019.

[6] D. Wagner, S. Y. Kim-Castet, A. Jimenez, M. Elaasar, N. Rouquette,
and S. Jenkins, “CAESAR model-based approach to harness design,” in
2020 IEEE Aerospace Conference. IEEE, 2020, pp. 1–13.

[7] D. A. Wagner, M. Chodas, M. Elaasar, J. S. Jenkins, and N. Rouquette,
“Ontological Metamodeling and Analysis Using openCAESAR,” in
Handbook of Model-Based Systems Engineering, A. M. Madni, N. Au-
gustine, and M. Sievers, Eds. Cham: Springer, 2022, pp. 1–30.

[8] C. Hildebrandt, A. Köcher, C. Küstner, C.-M. López-Enrı́quez, A. W.
Müller, B. Caesar, C. S. Gundlach, and A. Fay, “Ontology building
for cyber–physical systems: Application in the manufacturing domain,”
IEEE Transactions on Automation Science and Engineering, vol. 17,
no. 3, pp. 1266–1282, 2020.

[9] G. Tolentino and J. Wood, “Balancing systems engineering rigor with
agile software development flexibility,” Insight, vol. 21, no. 2, pp. 25–28,
Jan. 2018.

[10] O. L. De Weck, A. M. Ross, and D. H. Rhodes, “Investigating relation-
ships and semantic sets amongst system lifecycle properties (ilities),”
ESD Working Papers;ESD-WP-2012-12, 2012.

[11] K. D. Willett, R. Dove, A. Chudnow, R. Eckman, L. Rosser, J. S.
Stevens, R. Yeman, and M. Yokell, “Agility in the future of systems
engineering (FuSE)-a roadmap of foundational concepts,” in INCOSE
International Symposium, vol. 31, no. 1. Wiley, 2021, pp. 158–174.

[12] J. Navas, S. Bonnet, J.-L. Voirin, and G. Journaux, “Models as enablers
of agility in complex systems engineering,” in INCOSE International
Symposium, vol. 30, no. 1. Wiley Online Library, 2020, pp. 339–355.

[13] J. Ma, G. Wang, J. Lu, H. Vangheluwe, D. Kiritsis, and Y. Yan,
“Systematic literature review of MBSE tool-chains,” Applied Sciences,
vol. 12, no. 7, p. 3431, 2022.

[14] M. Chami and J.-M. Bruel, “A Survey on MBSE Adoption Challenges,”
in INCOSE EMEA Sector Systems Engineering Conference (INCOSE
EMEASEC 2018), Berlin, Germany, Nov. 2018, pp. 1–16. [Online].
Available: https://hal.science/hal-02124402

[15] A. L. Ramos, J. V. Ferreira, and J. Barceló, “Model-based systems engi-
neering: An emerging approach for modern systems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 42, no. 1, pp. 101–111, 2011.

[16] D. Gibson, “Factors affecting systems engineering rigor in launch
vehicle organizations,” Ph.D. dissertation, University of Central Florida,
2019.

[17] J. Denil, R. Salay, C. Paredis, and H. Vangheluwe, “Towards agile
model-based systems engineering,” in CEUR workshop proceedings,
2017, pp. 424–429.

[18] M. Zadahmad, E. Syriani, O. Alam, E. Guerra, and J. de Lara, “DSM-
Compare: domain-specific model differencing for graphical domain-
specific languages,” Software and Systems Modeling, pp. 1–30, 2022.

[19] J. S. Jenkins and N. Rouquette, “Semantically-rigorous systems engi-
neering modeling using SysML and OWL,” in Proceedings of the 5th
International Workshop on Systems & Concurrent Engineering for Space
Applications, 2012.

[20] G. P. Krupa, “Application of agile model-based systems engineering in
aircraft conceptual design,” in Proceedings of the 31st Congress of the
International Council of the Aeronautical Sciences, 2018.

[21] Q. Do and S. Cook, “10.5. 1 an MBSE case study and research
challenges,” in INCOSE International Symposium, vol. 22, no. 1. Wiley
Online Library, 2012, pp. 1531–1543.

[22] S. C. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse,
B. S. Gilbert, L. Hartman, T. Kahn, and J. Cutler, “Applying model
based systems engineering (MBSE) to a standard cubesat,” in 2012 IEEE
aerospace conference. IEEE, 2012, pp. 1–20.

[23] I. Rountree, “MBSE applications for the MSR SRC Mars Ascent
Vehicle,” in Aerospace Conference (AERO). IEEE, 2022, pp. 1–14.

[24] L. Boggero, P. D. Ciampa, and B. Nagel, “An MBSE architectural
framework for the agile definition of system stakeholders, needs and
requirements,” in AIAA Aviation 2021 Forum, 2021, p. 3076.

[25] C. Hennig, A. Viehl, B. Kämpgen, and H. Eisenmann, “Ontology-
based design of space systems,” in The Semantic Web–ISWC 2016: 15th
International Semantic Web Conference, Kobe, Japan, October 17–21,
2016, Proceedings, Part II 15. Springer, 2016, pp. 308–324.

[26] M. O. Nachawati, G. Bullegas, A. Vasilyev, J. Gregory, A. Pop,
M. Elaasar, and A. Asghar, “Towards an open platform for democratized
model-based design and engineering of cyber-physical systems,” in
Modelica Conferences, 2022, pp. 102–114.

https://hal.science/hal-02124402

	Introduction
	Balancing Agility and Rigor in MBSE
	MBSE Methodologies at JPL

	Agility and Rigor in MBSE Methodology Functions
	Meaning of Agility and Rigor
	Agility
	Rigor
	Trade-offs between Agility and Rigor

	MBSE Methodology Functions at JPL
	Representation
	Authoring
	Federation
	Configuration
	Integration
	Analysis
	Reporting


	Supporting Rigor and Agility in openCAESAR
	Introduction to openCAESAR
	Kepler16b Running Example
	Representation
	Vocabularies and Descriptions
	Description Logic
	Open-world versus Closed-world

	Authoring
	Federation
	Configuration
	Integration
	Analysis
	Reporting

	Lessons Learned and Open Challenges
	Related Work
	Conclusion
	References

