
Towards a Systematic Reporting
Framework for Digital Twins: A
Cooperative Robotics Case Study

Journal Title
XX(X):1–24
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Santiago Gil1 , Bentley J. Oakes2 , Cláudio Gomes1 , Mirgita Frasheri1 , and Peter G.
Larsen1

Abstract
Digital Twins (DTs) can be constructed for many different applications, leading to substantial differences between
different case studies. To be able to learn from the challenges and lessons learned by other DT practitioners, it is
important that experience reports be consistent to facilitate comparisons. In this paper we merge three reference
description frameworks for DTs, one generated from a systematic mapping study, one generated from an analysis
of experience reports, and one from a systematic literature review, to come up with a unified characterization of DT
applications. This analysis has identified six non-overlapping and three cross-cutting characteristics in the reference
frameworks. This paper showcases the unified characterization with 21 characteristics to report on a DT case study
called the Flex-cell, a manufacturing cell with two robotic arms used for cooperative assembly. The generalizability of
this unified characterization is validated using a multi-case approach with another case study in robotics and another
in the food industry. We call on the DT community to integrate these systematic reporting principles in their future DT
experience reports such that other practitioners can learn from each other more effectively.

Keywords
Digital Twin, Experience report, Robotic system, Mobile Robotics, Taxonomy, Co-simulation, Modeling and simulation

Copyright Authors 2024. This is the author’s version of
the work. It is posted here for your personal use. Not
for redistribution. The definitive version was published in
Sage SIMULATION journal, https://doi.org/10.1177/
00375497241261406.

1 Introduction

Digital Twins (DTs) are virtual representations of their
physical counterparts where bi-directional communication
is enabled1. This technology has attracted considerable
research attention2 as a modern approach for improving
processes through monitoring, simulation, and virtual
execution, achieving applications supported by virtual
commissioning mechanisms3. Although development and
operation of DTs may still have certain barriers due to
complexity and ensuring a sufficient representation of the
physical system, it is a promising technology to support the
transition into the digitalized world that can be used for
experimentation in a risk-free environment4.

DT examples are already found in the robotics domain
to represent and interact with the components of robotic
systems with value-added services5. They can represent
the entire robot and/or internal parts of it and generate
outputs based on optimization goals. Due to the complexity
of robotic systems, simulation models that are contained
in DTs can cover one or multiple modeling aspects, such
as kinematics, dynamics, rigid body, and control, among
others6. In general, DT applications in robotics require
the orchestration of the DT constellation7 to incorporate

different models, tools, and services to fulfill its particular
purpose and scope.

When dealing with the DT engineering of cooperative and
collaborative robots, composition can be used to approach
the multiplicity of the independent sub-components that
compose the larger system8,9. However, this is not an easy
task and a current challenge in DTs for robotics10. Moreover,
some aspects of composition, such as vertical composition,
composition for different perspectives, composition of
heterogeneous twin implementations, and composition of
interfaces, are current challenges in relation to DT model-
driven engineering methods11,12. All these challenges, plus a
lack of guidelines for DT engineering and reporting, make it
difficult to precisely describe the process and implementation
of DT case studies.

Although there are several case study reports of DTs in
literature, these reports have been mostly described based on
individual case-specific requirements rather than on general
requirements for DTs, making the reporting procedure
difficult to digest by the readers from a broader audience7.
No previous study has used a well-defined reporting
framework (or a combination of reporting frameworks) for
describing essential DT characteristics and their findings in
relation to challenges and lessons learned. DT case study

1Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Denmark
2Polytechnique Montréal, Montréal, Canada

Corresponding author:
Bentley Oakes, Polytechnique Montréal, Montréal, Canada
Email: bentley.oakes@polymtl.ca

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

https://orcid.org/0000-0002-1789-531X
https://orcid.org/0000-0001-7558-1434
https://orcid.org/0000-0003-2692-9742
https://orcid.org/0000-0001-7852-4582
https://orcid.org/0000-0002-4589-1500
https://doi.org/10.1177/00375497241261406
https://doi.org/10.1177/00375497241261406

2 Journal Title XX(X)

experience reports often lack detailed descriptions, and focus
mostly on the system under study and its bi-directional
connections. This hides relevant characteristics that i) may
be relevant for the readers to understand the DT engineering
process and ii) highlight the complexity behind such systems,
which are then needed to describe the findings, challenges,
and lessons learned.

Since DT technology is a modern concept, there is
still lack of consensus on aspects, e.g., definitions13,
standardization14, and reporting. The recent ISO-23247
standard15 and IEC-63278-116 are pioneer standards in
the DT technology17, the former focusing on the general
principles for DTs for manufacturing and the latter
focusing on the use of Asset Administration Shell (AAS)
representation for digital assets that can be used to exchange
data in DTs. However, there is no standard or specification
on how to report DT case studies.

To bridge the aforementioned gaps, we propose a merge of
three existing description frameworks, namely, Oakes et al.7,
which presents 14 fundamental DT characteristics; Dalibor
et al.14, which presents a four-dimensional feature model
describing DT features; and Jones et al.18, which presents
19 themes, including 13 characteristics and seven knowledge
gaps for DTs. The purpose of merging the three reference
frameworks is to propose a more complete and unified
reporting framework with 18 fundamental characteristics
and three cross-cutting characteristics for reporting DT case
studies.

The merged framework is then showcased to report on
a sufficiently-complex case study in robotics, the flex-cell,
a manufacturing cell composed of two robotic arms on a
working plate for cooperative assembly. Also, with the aim of
showing the generalizability of the reporting framework, two
more case studies, one with a miniature agricultural robot
and one with an incubator are briefly showcased.

The flex-cell case study, reflecting on similar setups in
our industrial partners, addresses the challenge of non-trivial
composition of DTs with coupled behavior. The example
implementation of the flex-cell DT in the Digital Twin as
a Service (DTaaS) platform proposed by Talasila et al.19

is publicly available on the INTO-CPS Association GitHub
repository*. Through reporting the resulting characteristics
of the flex-cell, we show that this case study provides a
representative and sufficient exemplar to be utilized as a
reference in future DT experience reports.

The motivation behind reporting the flex-cell DT on a
merge of three different frameworks is twofold; first, for
the readers to easily identify the engineering requirements,
process, and terminology in a structured way, and second,
with the intention of presenting the challenges, lessons
learned, and limitations of this case study regarding the DT
engineering and reporting aspects, based on the guidelines
provided by the unified characterization. Moreover, we
foresee the potential of our systematic reporting framework
as a basis for subsequent research and industrial reports and
assessments in the DT domain.

Contributions Our main contributions are (1) systemat-
ically merging three reference description frameworks for
reporting DT case studies to identify non-overlapping char-
acteristics and provide a combined framework that covers a
consistent set of characteristics, (2) reporting a representative

exemplar DT case study in cooperative robotics using the
resulting characteristics, (3) briefly reporting on two addi-
tional DT case studies with the proposed framework, one
for mobile robotics and another for a food incubator, and
(4) detailing the challenges and lessons learned from the
experience we gained throughout the DT engineering and
reporting processes.

Structure The remainder of this paper is structured as
follows: Section 2 presents relevant background and related
work for this case study report. Section 3 presents the
systematic merging of the reference reporting frameworks
presented by Oakes et al.7, Dalibor et al.14, and Jones et
al.18. Section 4 elaborates on the flex-cell and its components
by reporting it with the resulting unified characteristics.
Section 5 describes two more case studies to argue for
the generalizability of the reporting framework. Section 6
discusses the main challenges and lessons learned from this
case study report and lists the identified limitations. Finally,
Section 7 provides the concluding remarks and potential
research directions.

2 Background and Related Work
This section will introduce concepts related to DTs, the
composition of DTs, the reporting frameworks, robotic arms,
and the used tooling. We also detail some related work of
previous DT case studies and experience reports.

Background
Digital Twins (DTs) were proposed as a virtual repre-

sentation of a physical asset, usually called the Physical
Twin (PT), with enabled bi-directional communication1, in
comparison to their downgraded versions, Digital Models
(with no communication at all) and Digital Shadows (DSs)
(with unidirectional communication from the physical coun-
terparts to the DSs). Although there are multiple definitions
for DTs13,20, these may require different components, rang-
ing from models, data, tools, and services, depending on
the business goals. In terms of modeling, DTs may cover
different aspects of the physical system, including but not
limited to geometric, physical, behavioral, rule, assembly,
verification, and management modeling6.

DT Engineering Some of the pioneer initiatives assisting
the DT engineering process are “DT platforms”21, which are
mainly built using a meta-model approach, and enable the
creation of DTs from properties and operations contained in
a data model or schema. Nevertheless, some requirements
for running simulation are not necessarily covered by these
platforms, creating a gap between the DT and its behavioral
components, which are essential to run experiments22 and
have virtual commissioning mechanisms3. Other tools,
such as co-simulation frameworks, can also be used
for the DT engineering and operation process when
integrated with communication interfaces to achieve bi-
directional communication, complementing the simulation
and behavioral requirements23,24. Another survey of open-
source frameworks for realizing DTs is presented by Gil

∗https://github.com/INTO-CPS-Association/
DTaaS-examples/tree/main/digital_twins/flex-cell

Prepared using sagej.cls

https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/flex-cell
https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/flex-cell

Gil et al. 3

et al.17, which focuses on tools and categories for the
application of DTs in different domains.

The DT engineering process can also benefit from reusable
components, such as models, tools, or services. Reusing
components helps with reducing the implementation effort
of some engineering tasks and increase the maturity level of
the DTs and their components in comparison to creating DTs
from scratch 14,25. On the same agenda, reusable components
can be hosted in a platform, such as a DTaaS platform26,
where all the infrastructure and services for DTs can be
orchestrated.

Other implementations for DT deployment have used a
model-based design approach to increase the reusability
of DT components from a high-level perspective27. The
reusable components can, for instance, be hosted in a DTaaS
platform26, where along with other tools and services, DTs
have a different lifecycle and can be used for different
purposes with less design and implementation effort.

Composable Modeling of DTs Following with the idea
of reusable components, DTs can also be engineered with
a composable approach. Composability in DTs is highly
beneficial since it can lead the DTs to effectively reuse their
internal components, such as structure, models, and tools, in
a hierarchical way14. Hierarchical (dis)aggregation can also
be used to group individual DTs and their components into
larger DTs28.

Although composable DTs are highly suitable due to their
contribution to increase the reusability of their components,
aspects, such as internal dynamics, heterogeneity, and
relationships make the composition process complex.

In the robotics domain, the composition of DTs should
also mirror the composition and constraints of the physical
system29, and therefore, both hardware and software
interfaces need to be compatible.

The study on the composition of DTs8 proposes a
modeling approach that supports composition in cooperative
systems and its extension to integrate the skill-based
engineering concept30, which have been assessed on the flex-
cell case study. The base modeling approach is designed
on top of an ontological model that defines four main
components, namely, Attributes containing the state of the
PT, Operations containing the direct and indirect operations
of the DT, Behaviors containing the behavioral models of the
DT, and Relationships containing the internal relationships
between smaller DTs. As part of the Relationships, the
property isComposedOf enables the composition of larger
DTs from smaller DTs. Moreover, the relationships can be
extended to other kind of properties, such as cooperateWith,
requires, and so on. As a result, the composed DTs
contain the attributes, operations, behavioral models, and
relationships of their smaller DTs.

Tooling As for the tooling, several tools specific for the
DT engineering process are used throughout this paper.
The architectural extension for integrating behavioral models
with DT platforms presented by Lehner et al.31, called the
DT Manager, is used for administrating the DTs and their
interfaces, i.e., with the physical system and simulations.
The DT Manager supports the integration of behavioral
models through Functional Mock-up Units (FMUs) via the
Functional Mock-up Interface (FMI†)32. It also enables the

administration of PT and DT at the same abstraction level,
i.e., as twins, having access to DT services at the DT service
layer seamlessly.

The DT Manager can be wrapped as a reusable
tool, which is then embedded into the DTaaS platform
proposed by Talasila et al.19. The DTaaS platform is a
complementary approach across different design patterns
for developing DTs. It provides an infrastructure to host
and maintain DTs and their assets with a particular asset
configuration definition. Within the platform, it is possible
to convey existing DT platforms and multiple engines to
run simulations of the DTs, and integrate them with third-
party services. Nevertheless, the DTaaS platform may add
additional overhead and requirements for the design of the
DT to be hosted. The DTaaS platform defines a DT by
the components Data, Tool, Function, and Model and the
orchestration of infrastructure and DT services, therefore,
it enables the DT constellation7. A DT can be initialized
and administrated throughout its lifecycle with the DTaaS
platform, in this case, using the DT Manager. The DTaaS
platform also contains Maestro33, a co-simulation engine to
run coupled simulations based on the FMI interface.

Finally, some of the models in this case study use the
Robotics Toolbox by Corke and Haviland34. Namely, we use
the kinematic models available in the Robotics Toolbox and
their solvers for finding the inverse kinematics and trajectory
generation. These models are then wrapped as FMUs using
the UniFMU tool35, enabling their integration with the FMI
interface.

Robotic Arms Also called robotic manipulators, robotic
arms are electronically controlled mechanical devices with
multiple links and joints36, which can be controlled to
complete certain tasks. These robotic manipulators can be
classified into rigid and flexible37. The modeling and control
of robotic manipulators may not be trivial tasks and these
require some level of expertise38. In particular, behavioral
aspects including kinematics and dynamics are important
when considering simulation of robotic arms39. These
models can be used at the control level or at the monitoring
level, enabling behavioral representations in DTs38.

DTs can be used along with robotic arms as an integral
complement for control and monitoring of the physical
robots and their application in collaborative robotics40. DTs
can also assist to set up collaborative tasks in human-robot
shared workspaces41,42. The survey on DTs for robotics
presented by Mazumder et al.10 showed that the composition
of DTs from modules for this domain is still a current
challenge due to high development expenses and lack of
model or architecture generalization.

Reporting Frameworks With the aim of better describing
DT engineering processes for experience reports, Oakes
et al.7 proposed a description framework composed of 14
essential characteristics of DTs, as described in Table 1. This
framework was then used to report on a smart drilling system
and compared against the Asset Administration Shell (AAS)
standard43.

Similarly, Dalibor et al.14 carried out a systematic
mapping study on software engineering for DTs based

†https://fmi-standard.org/

Prepared using sagej.cls

https://fmi-standard.org/

4 Journal Title XX(X)

Table 1. DT Characteristics proposed by Oakes et al. 7.

Characteristic Description

C1: System-
Under-Study
(SUS)

The PT, its environment, and any agents
present

C2: Acting
Components

Any additions and modifications to the SUS
which enables communication from the DT
to the SUS

C3: Sensing
Components

Any additions and modifications to the
SUS which enables communication from
the SUS to the DT

C4:
Multiplicities

How many systems and DTs are involved in
the DT ecosystem and their relationships

C5: Data Trans-
mitted

The data transmitted from the SUS to the DT

C6: Insights/Ac-
tions

The information from the DT to agents
in the SUS, or the automatic controlling
actions from the DT to the SUS

C7: Services The activities that the DT is used for. This
could also be termed the capabilities or
usages of the DT

C8: Enablers Computational components which take
models and data, and support the services
of the DT

C9: Models and
Data

The input and output for the enabler
components, with some data coming from
the SUS

C10: Constella-
tion

The conceptual relationships within the DT
of the models/data, enablers, and services

C11: Time-scale The time-scale of the communication
between the DT and SUS, and the
computation within the DT. Includes
data, insights, actions, and any simulations

C12: Fidelity
Considerations

For each DT service, the considerations for
fidelity (how the DT represents the SUS)

C13: Life-cycle
Stages

The stages of the SUS (ideation, realization,
utilization, etc.) which the DT is used for. If
the scope of the SUS changes, this should
also be reported

C14: Evolution The evolution of the DT throughout its
development (milestones, publications)

on requirements, where they proposed a feature model to
assist the engineering and operation of DTs made of four
dimensions and subfeatures. This feature model (refer to44

for more information on feature models) also helps to
identify and report the steps involved in the DT engineering
process. The dimensions are described in Table 2.

Jones et al.18 also proposed a set of themes, resulting in
13 characteristics and seven knowledge gaps/topics in the
domain, as presented in Table 3, which were the result of
the analysis of a systematic literature review.

Related Work
Although there are relevant related work in relation to case
studies in DT engineering, experience reports, and DTs
of robotic arms, none has used the reference reporting
frameworks mentioned in this study nor a combination of
them to more accurately report their findings, challenges, and
lessons learned. Additionally, no previous work has merged
reporting frameworks for reporting based on unified and
general requirements of DT engineering instead of focusing
on individual, case-specific requirements. This leads the

Table 2. DT Dimensions proposed by Dalibor et al. 14.

Dimension Description and subfeatures

Requirements
Dimension

This dimension covers the basic constituents
and characteristics of the DT under study. It
is characterized by the subfeatures Counter-
part, Multiple Representation, Usage Phase,
Representation Phase, Asset Interaction,
Optimization, and Consist Of

Realization
Dimension

This dimension reports on how the DT
is implemented and which tools and
processes are used for the DT development.
It is characterized by the subfeatures
Implementation, Tools, and Process

Deployment
Dimension

This dimension reports on hosting the DT
and its connection to the real world. It is
characterized by the subfeatures Hosting
and Connection

Operation
Dimension

This dimension reports on the operational
features of the DT while it is running. It is
characterized by the subfeatures Horizontal
Integration, Decision Making, Inputs and
Events, and Outputs

reports to mainly describe the aspects in relation to the SUS,
DT services and usages, tools and enablers, models, data
transmitted, and asset interaction, whereas the other aspects
usually remain hidden from the reader.

As for previous works of the authors, there are three
relevant case studies to relate to this work, namely, the
Desktop Robotti DT 45, the Incubator DT.46, and the DT for
a manufacturing pilot line47.

The Desktop Robotti is a small replica of the mobile
field robot Robotti48, which is used as a test-bed for
experimenting at a low-cost with different DT services,
such as visualization and monitoring, prediction, among
others. Lumer-Klabbers et al.45 proposed the FMI-based DT
running along-side the Desktop Robotti, where both DT
and PT were provided the same control commands. The
Desktop Robotti DT reports on the SUS, own requirements,
tools/enablers, models and data, DT services/usages,
connection, constellation, insights and actions, sensing and
acting components, data transmitted, validation process,
and evolution. This case study is used to argue for the
generalizability of our approach later on in the paper.

The Incubator DT‡ by Hao et al.46 is the DT for
a thermal chamber with temperature control, monitoring,
what-if analysis, and formally verified self-adaptation49,50,
which has been used for the incubation of Tempeh, an
Indonesian fermented soybean food51. The incubator has
also served as a case study in Lehner et al.31 for its
application integration with the DT Manager and the FMI
interface, and in Gil et al.17 to explore the capabilities of
open-source DT frameworks based on the services provided
by the Incubator DT. The incubator DT reports on the
SUS, sensing and acting components, models and data,
data transmitted, connection and hosting, tools/enablers,
calibration and testing process, and DT services/usages. This

‡https://github.com/INTO-CPS-Association/example_
digital-twin_incubator

Prepared using sagej.cls

https://github.com/INTO-CPS-Association/example_digital-twin_incubator
https://github.com/INTO-CPS-Association/example_digital-twin_incubator

Gil et al. 5

Table 3. DT Themes proposed by Jones et al. 18.

Theme Description
Characteristics
Physical Entity A real-world artifact, i.e., a PT
Virtual Entity A computer generated representation of the

physical artifact, i.e., a DT
Physical
Environment

The measurable real-world environment
within which the PT exists

Virtual Environ-
ment

Any number of virtual worlds or simulations
that replicate the state of the physical
environment and designed for specific use-
case(s)

Fidelity The number of parameters transferred
between the physical and virtual entities,
their accuracy, and their level of abstraction

State The current value of all parameters of either
the physical or virtual entity/environment

Parameters The types of data, information, and pro-
cesses transferred between entities

Physical-
to-Virtual
Connection

The connection from the physical to the
virtual environment. Comprises of physical
metrology and virtual realization stages

Virtual-to-
Physical
Connection

The connection from the virtual to the
physical environment. Comprises of virtual
metrology and physical realization stages

Twinning and
Twinning Rate

The act of synchronization between the
two entities and the rate with which
synchronization occurs

Physical
Processes

The physical purposes and process within
which the physical entity engages

Virtual
Processes

The computational techniques employed
within the virtual-world

Knowledge
Gaps
Perceived Bene-
fit

The envisaged advantages achieved in
realizing the DT

DT across the
Product Life-
cycle

The life-Cycle of the DT – (whole life cycle,
evolving digital profile, historical data)

Use-Cases The applications of the DT
Technical Imple-
mentations

The technology used in realizing the DT

Levels of
Fidelity

The number of parameters, their accuracy,
and level of abstraction that are transferred
between the virtual and physical twin/envi-
ronment

Data Ownership The legal ownership of the data stored
within the DT

Integration
between Virtual
Entities

The methods required to enable communi-
cation between different virtual entities

case study is used to argue for the generalizability of our
approach later on in the paper.

The DT for a manufacturing pilot line by Kakavandi et
al.47 is a data-driven DT with integrated data analytics for
high-volume production of medical devices. The case study
reports on the SUS, models and data, DT services/usages,
data transmitted, and tools/enablers.

Regarding other case studies on DT engineering, the
DT for a vessel presented by Zhang et al.52 provides
services for early warning, lifecycle service support, system
behavior prediction, and verification of the operational
performance. The vessel DT relies on FMUs and co-
simulation. The case study reports on the SUS, data
collection and transmission, models and data, constellation,

tools/enablers, DT services/usages, validation process, and
lifecycle support (although not specific which stages).

More specifically to the robotics domain, Malik et al.9

presented a case study of DT engineering for a human-
robot collaboration assembly system for flexible automation
solutions. Their case study uses a UR5e robotic arm and
reports on the SUS, models and data, DT services/usages,
actions and insights, and the joint engineering development
process of the DT. Guerra-Zubiaga et al.53 presented two
case studies of DTs for manufacturing cells with robotic
arms for telemetry monitoring and control. Their case
studies report on the SUS, asset interaction, actions and
insights, models and data, tools/enablers, inputs and outputs,
connection and hosting, and DT services/usages.

In relation to experience reports on DTs, David et al.54

report on a DT for controlled environment agriculture along
with challenges and lessons learned, from requirements
leveraged for DTs of cyber-biophysical systems coming
from strategies for generalization of software engineering
theories. Onaji et al.55 report on three different case studies
within the manufacturing domain and their corresponding
benefits/lessons learned. The reported six characteristics
come from the resulting conceptual framework of a literature
review in DT applications within the manufacturing industry,
which are used for describing the DT creation process.

Contrast to Previous Works

The previous works on which this paper is based upon
are Gil et al.8,30 where the flex-cell case study has been
used to demonstrate and evaluate methods for a modeling
approach for composable DTs and the integration of robot
skills into this approach; the DT Manager by Lehner et al.31

as an architectural framework for realizing DTs; the DTaaS
Platform by Talasila et al.19 as a hub for administrating DT
components and tools; and the conceptual structure for DTs
by Oakes et al.7.

The differences of this research in comparison to the
previous works listed above are i) this paper elaborates
on a fully-orchestrated flex-cell DT, whereas the previous
contributions either used the same case study, but only
approached the flex-cell DT from the particular method’s
scope, or proposed a method for DTs without using the flex-
cell DT as a case study. For this contribution, the approaches
are combined and the report is based on those challenges
that arose during combining the approaches. Additionally,
the structure to use for the report is further analyzed
and extended with two additional existing description
frameworks for DTs. As a result, this work reports on and
discusses a more complete flex-cell DT (which now contains
experiments with coupled behavior via co-simulation and
can be executed on the DTaaS Platform) and its engineering
process, based on an extended set of characteristics.

3 A Unified Reporting Framework

This section presents our contribution of a unified reporting
framework for DTs. We discuss the systematic procedure for
merging three previous reference frameworks, and present
the list of 21 characteristics and their description.

Prepared using sagej.cls

6 Journal Title XX(X)

Rationale
The rationale for selecting these three reference frameworks
by Oakes et al.7, Dalibor et al.14, and Jones et al.18 is
as follows: First, we selected Oakes et al.7 because it
was explicitly constructed for the description of DTs based
on an analysis of experience reports. Then, we selected
the feature model proposed by Dalibor et al.14 because it
provides a comprehensive and recent survey in the field
of model-based/simulation DTs that covers the phases for
engineering and realizing DTs. Finally, we selected the
themes/characteristics by Jones18 because it is a well-known,
recent and top-cited review in the field of DTs2 and provides
a broader view of the characteristics of DTs.

Therefore, by having these three reference frameworks,
we expect that the resulting characteristics come from more
general definitions for DTs, producing a set of fundamental
requirements to be reported on DT case studies. Using three
frameworks also allows us to triangulate the characteristics,
and thus, the merge of elements is clearer as we focus
on those aspects which appear in at least two of the three
frameworks. As a consequence, this helps improve the
generalizability of the resulting framework.

Methodology
To systematically merge the characteristics presented in
the three frameworks, we follow the methodology and
recommendations presented by Kundisch et al.56 to create
a new set, in this case a taxonomy, based on the existing
elements of the three reference frameworks/taxonomies.

Thus, we identify the meta-characteristics of the
phenomenon based on the provided definitions and a
collective perception, and then, cluster the elements based
on similarities and differences, obtaining groups of objects,
which are then merged into a resulting characteristic.

Since the terminology adopted in the three frameworks
is similar and the concepts are within the same domain,
the clustering is performed based on the similarity or
proximity between the elements. Therefore, whenever there
is proximity or equality between two elements, these
are grouped into the same resulting characteristic, which
represents the broader term for the merged elements.

In our procedure, the first two authors of this article each
proposed (independently) a candidate taxonomy following
the definitions in each reference framework. Then, a
discussion was held between the two authors to solve
inconsistencies and align terminology. This continued until
the characteristics were agreed upon by both authors. The
candidate result of the merge was then shared in the working
group of this article’s authors and discussed to obtain more
general opinion and reduce individual bias.

We have assigned each element in the taxonomy a name
which covers the broader concept, and also categorized the
characteristics into four phases, similar as the dimensions
proposed by Dalibor et al.14. These phases help to
identify the order of the resulting characteristics from
conceptualization to operation of DTs.

Merged DT Reporting Characteristics
Table 4 shows the resulting merged characteristics (MCi) to
be reported based on the results of the taxonomy update of

the three reference reporting frameworks. The categorization
of the characteristics into the phases of Requirements,
Conceptualization, and Design, Realization, Deployment,
and Operation is shown in Table 5.

We propose that a total of 18 fundamental characteris-
tics are reported (in bold). We also propose three cross-
cutting characteristics (in italics), namely, data ownership
and privacy, standardization, and security and safety con-
siderations. These points are mentioned in the reference
frameworks, but are not necessarily considered as charac-
teristics. Although we do not propose them as fundamental
characteristics, these three cross-cutting characteristics are
worth mentioning since they are discussed in at least one of
the three reference frameworks and focus on existing gaps in
the DT domain, and are especially relevant for industrial case
studies and scalable long-term applications. These cross-
cutting characteristics are not applicable to all DT case
studies, however, their inclusion in our reporting framework
encourages authors to report on them when applicable.

During the merging process, the characteristics were
grouped based on their meta-characteristics. Identifying the
meta-characteristic was easy for most of the characteristics,
since there is a quasi one-to-one relationship between the
characteristics provided in the frameworks based on their
descriptions. For those characteristics difficult to group
up, we used a broader term covering the features of the
three reference frameworks. In some of the characteristics,
especially in Jones et al.18, the concepts are more abstract
and general, and therefore, can cover more than one aspect
and can be grouped into more than one element. In those
cases, where there was a partial coverage of the base
characteristic for the resulting characteristic, the key aspect is
highlighted with italics and underlined in Table 4. Moreover,
the merge also required some considerations, which are
described as follows:

• There is a distinction between technical and concep-
tual implementations for the connections at different
levels, including physical and logical aspects, tech-
nology, and design considerations. Therefore, MC2:
Physical acting components and MC5: Virtual-to-
Physical Interaction, MC3: Physical sensing com-
ponents and MC4: Physical-to-Virtual Interaction,
MC15: Digital Twin Technical Connection, and
MC16: Digital Twin Hosting/Deployment belong to
different categories.

• MC6: Digital Twin Services differ from MC17:
Insights and Decision Making in the sense that, the
former refers to the expectations of what the DT is
intended to offer (and so, how the DT is designed) and
the latter to the insight generation during operation.

• The characteristic Representation phase in Dalibor
et al.14 is extra information regarding how the DT
represents the PT in MC9: Life-cycle stages.

• The characteristic Technical implementation in Jones
et al.18 is split into several categories since it covers
several technological aspects, i.e., it is not restricted to
MC11: Tooling and Enablers only, which is the most
similar category.

• For the characteristic MC13: Twinning Process and
Digital Twin Evolution, Twinning refers to the
methodology (which helps for the replicability), while

Prepared using sagej.cls

Gil et al. 7

Table 4. Merge of the reporting frameworks by Oakes et al. 7, Dalibor et al. 14, and Jones et al. 18. In bold : Fundamental
characteristics. In italics: cross-cutting characteristics.

Description

Describes the SUS, i.e., the PT, of the system of interest.

Describes the available acting components in the DT
constellation, i.e., the mechanisms the DT can use to act
on the PT.

Describes the available sensing components in the DT
constellation, i.e., the mechanisms the PT can use to
transfer data to the DT.

Describes the interactions from the physical world to the
virtual world, i.e., the data transmitted from PT to DT,
including inputs and events that the DT processes.

Describes the interactions from the virtual world to the
physical world, i.e., the data transmitted from DT to PT,
including outputs the DT generates as part of its services.

Describes the services, such as optimization, task
planning, and visualization, which the DT provides to the
users and the physical system.

Describes the time-scale use and the time rates for the
DT services and DT-to-PT synchronization.

Describes the multiplicities, i.e., the internal twins that
compose the DT system, which can be implemented in a
centralized or decentralized way.

Describes the lifecycle phases in which the DT takes
place. It also informs which representation phase the DT
covers of its physical counterpart, i.e., as designed (ideal),
as manufactured, or as operated.

Describes the DT components, including available
models and data, and their role in the DT constellation.

Describes the tools or enablers that are used to achieve
the goals of the DT, i.e., they enable the DT to provide the
DT services.

Describes the orchestration of the DT system,
components, and services as a whole.

Describes the engineering process involved in the DT
implementation, including the development process,
quality assurance, and definition of requirements. It also
informs on the milestones of the DT engineering process
over time and intended upgrades.

Describes the fidelity and validity considerations behind
the models that constitute the DT, including verification
and validation mechanisms, uncertainty, and errors.

Describes the technical network connection details
between PT and DT, including the network protocols and
architectures.

Describes the technical hosting aspects of the DT and the
associated technology.

Defines the insights and decision making, i.e., indirect
outputs of the DT, which have no direct effect on the PT,
such as update of parameters, plans, and so on.

Describes the information exchange with external
information systems not limited to other DTs.

Refers to the ethical and technical aspects regarding data
ownership and data privacy. Is the data owned by the PT
owner or by the DT service provider?

Refers to the standards being followed for the
engineering of the DT and its components.

Refers to the ethical and technical aspects regarding data
cybersecurity and safety on operation. Can a DT execute
operations remotely on a PT where there may be
accidents with humans?

Oakes et al. Dalibor et al. Jones et al. Resulting
Characteristic

MC1: System-under-
Study

MC2: Physical acting
components

MC3: Physical
sensing components

MC4: Physical-to-
Virtual Interaction

MC5: Virtual-to-
Physical Interaction

MC6: Digital Twin
Services

MC7: Twinning Time-
scale

MC8: Multiplicities

MC9: Life-cycle stages

MC10: Digital Twin
Models and Data

MC11: Tooling and
Enablers

MC12: Digital Twin
Constellation

MC13: Twinning
Process and Digital

Twin Evolution

MC14: Fidelity and
Validity

Considerations

MC15: Digital Twin
Technical Connection

MC16: Digital Twin
Hosting/Deployment

MC17: Insights and
Decision Making

MC18: Horizontal
Integration

MC19: Data Ownership
and Privacy

MC20: Standardization

MC21: Security and
Safety Considerations

System-
under-Study Counterpart Physical

Entity
Physical

Environment
Physical

Processes

Acting
Components

Parameters

Sensing
Components

Physical-to-
Virtual

Connection
Parameters

Insights /
Actions Outputs Asset

Interaction

Virtual-to-
Physical

Connection

Technical
Implementations Parameters

Services Optimization Perceived
Benefits Use Cases

Time-scale Twinning and
Twinning Rate

Multiplicities Multiple
Representation

Integration
between Virtual

Entities

Life-cycle
Stages

Usage

Phase

DT across product
Life-Cycle

State

Enablers Tools Technical
Implementations

Constellation Consists Of Virtual
Environment

Virtual
Processes

Evolution Process Twinning and

Twinning Rate

DT across product
Life-Cycle

Fidelity
Considerations

Process: Quality
Assurance Fidelity Levels of

Fidelity

Connection
Virtual-to-

Physical
Connection

Technical
Implementations

Technical
ImplementationsHosting

Insights /
Actions

Decision
Making Use Cases

Horizontal
Integration

Integration
between Virtual

Entities

Data
Ownership

Data
Transmitted

Inputs and
Events

Technical
Implementations

Models and
Data Implementation Virtual Entity

Representation
Phase

Evolution refers to the milestones (which helps for the
traceability).

• MC18: Horizontal Integration refers to integrations
with other information systems not limited to other
DTs, whereas MC8: Multiplicities focuses on the
multiple DTs and their integration/orchestration.

Based on the merge, we identified six gaps with at
least one of the three frameworks missing a description

for such a resulting characteristic, and three cross-cutting
characteristics. The gaps are MC2-MC3, MC7, MC15-
MC16, and MC18 and the cross-cutting characteristics
are MC19-MC21. Two out of the six fundamental
characteristics are only covered by one framework, whereas
the remaining four are covered by two frameworks.
Additionally, even though the descriptions by Jones et al.18

have a criterion for each of the resulting characteristics,

Prepared using sagej.cls

8 Journal Title XX(X)

Table 5. Categorization of phases for the resulting
characteristics. In bold : Fundamental characteristics. In normal
text : characteristics that also belong to this category but has
been defined in an earlier phase. In italics: cross-cutting
characteristics.

Requirements,
Conceptualiza-
tion, and Design

Realization Deployment Operation

MC1
MC2
MC3
MC4
MC5
MC6
MC7
MC8
MC9

MC10
MC11
MC12
MC13
MC14

MC20

MC15
MC16

MC17
MC18

MC4
MC5

MC19
MC21

it does not necessarily mean that such a criterion covers
sufficiently the corresponding characteristic. This is because
the definitions are more general, and therefore, fit in more
than one category. As a result, the resulting framework highly
complements the one provided by Jones et al.18 by making
the characteristics more specific, and hence, easier to report.

4 Flex-cell Case Study

This section presents our case study of the flex-cell,
including a brief overview and a thorough report through the
unified reporting framework presented in Section 3.

The flex-cell case study is a robot cell composed of
two different robotic arms for cooperative assembly (see
Figure 1), that has been used for exploratory and descriptive
case study research within the phenomenon of DTs in
robotics57,58. The research conducted on this case study
follows the methodology proposed by Runeson and Höst58,
as a case study that partially falls into the software
engineering domain.

The flex-cell is composed of four main assets, namely,
a Kuka lbr iiwa 7 robotic arm, a UR5e robotic arm, an
OnRobot RG6 gripper and an OnRobot 2FG7 gripper.
The connectivity for each asset is different; the robots
must be connected through TCP sockets and the grippers
through ModbusTCP. The connectivity for the UR5e robot
is performed through the Python module URInterface§ and
for the Kuka robot through the module Kukalbrinterface¶.

The flex-cell has provided sufficient complexity to seek
insights and ideas for new research as an exploratory case
study, and also to portray the challenges in this domain and
provide a solid foundation for research, obtaining lessons
learned, as a descriptive case study58. The scope and
phenomena for which this case study research is conducted
are in relation to i) composable DTs; ii) cooperative systems
with synchronous motions and coupled models; iii) multiple
abstraction levels of attributes and operations of both
robots and grippers; iv) complex system with kinematic
and dynamic models to account for behavioral aspects in a
cooperative setting; and v) multiple robotics applications that
include different operations, such as pick-and-place, peg-in-
hole, optimization in assembly, payload estimation, online
recalibration, and collision detection, among others.

The particular applications that are run on the flex-cell
case study in this work are based on a 2D cooperative
assembly where the scope is related to robot positioning. The
real workspace (x, y, z) of the flex-cell plate is discretized to
(X,Y, Z), where the discrete positions use the plate holes,
creating a grid of 16x24 holes separated by 5mm each.

Figure 2 shows two shapes, the square shape and the cross
shape, which are assembled on the plate with pegs/pins.
The robots take turns to pick a peg and place it in
the corresponding hole. Before a motion is performed, a
reachability analysis is done to check that the robot in turn
can perform the movement; if not possible, the other robot
takes over the movement to place the peg in the hole. The
control sequences are deterministically generated based on a
list of discretized vectors associated to the shape.

A

B

C

D

E

Figure 1. Flex-cell (A) and its components: robotic arms Kuka
lbr iiwa 7 (B) and UR5e (D), and grippers OnRobot RG6 (C) and
2FG7 (E). The black surface (A) represents the discretized
workspace.

Y-axis holes

X
-a

xi
s

h
ol

es

Square Shape

Y-axis holes

X
-a

xi
s

h
ol

es

Cross Shape

Figure 2. 2D assembly shapes carried out on the flex-cell plate.

Flex-cell DT Overview
The flex-cell DT is a constellation of models, tools, and
services, which enable the representation and interaction
mechanisms for the flex-cell system, considering its
individual components. Since there are several individual
components, the flex-cell DT is approached using the
modeling approach proposed in8, where each of the assets in
the system, i.e., robotic arms and grippers, are individually
represented and then composed into the flex-cell DT.

§https://gitlab.au.dk/clagms/urinterface
¶https://github.com/sagilar/kukalbrinterface

Prepared using sagej.cls

https://gitlab.au.dk/clagms/urinterface
https://github.com/sagilar/kukalbrinterface

Gil et al. 9

Figure 3 shows an overview of the DT composition of the
flex-cell using the modeling approach described in8.

The components of the flex-cell DT are defined by data
models, which describe the Attributes and Operations in
form of schemas. The Relationships are managed at a higher
abstraction level in an ontology. Finally, only the robotic
arms - not the grippers - contain simulation models, i.e.,
Behaviors, as described in8.

The individual FMUs are then used in co-simulations to
generate the results of the coupled behavior of the flex-
cell, i.e., the execution of the cooperative routines. This is
required since the simulators of the UR5e and Kuka lbr iiwa
7 are different, and we need them integrated in the virtual
space to represent a more similar setting to the real system.

For the co-simulation of the flex-cell we use the
co-simulation orchestration engine Maestro33 and the
RabbitMQFMU (RMQFMU)24. The purpose of Maestro and
the RMQFMU is to enable synchronization in the simulation
when the physical robots are executing cooperative motions.
In this sense, RMQFMU passes the commands of the
physical controller to the simulated robots during runtime.
Figure 4 shows a representation of the co-simulation setup
of the flex-cell to execute synchronous motions on the DT
and PT using the RMQFMU.

We use the DT Manager approach proposed in31 to handle
the connectivity between PT and DT and the game engine
Unity|| along with Unified Robotics Description Format
(URDF) models to generate the visual representation of the
flex-cell DT.

We use the DTaaS Platform proposed in19 for the
realization of the flex-cell DT and the orchestration of its
constellation. The environment provided in the platform
enables the combination of the components and methods
described above.

Description with the Proposed Description
Framework
We use our unified description framework presented in
Section 3 to summarize the flex-cell with all characteristics
in Table 6.

The following details each framework characteristic, from
a flex-cell DT implementation perspective:

MC1: System-under-Study

The flex-cell itself is the manufacturing cell described
above with the two robotic arms with attached grippers. The
environment is characterized by a plate with 16× 24 holes
where there are objects like Lego Bricks and pins/pegs to
place on the holes. The environment also has a safety system,
which is activated in case of a collision or an abnormal
condition, e.g., one of the robots has the emergency stop
active or the wiring for the safety signals is wrong. The
safety system also has a proximity sensor, which is enabled
when carrying out demonstrations for visitors to stop the
robots in case anyone gets closer to the working space. Each
robotic arm has a human-machine interface, where the agent,
a human operator, can manipulate the robots or set them
to work with remote control for automatic execution. The
sequences to assemble a shape are executed remotely from a
PC by the human operator.

MC2: Physical acting components
The acting components in the system are the two robotic
arms, the two grippers, and the safety system. The commands
sent to the robotic arms from the DT are processed by their
internal controllers to perform different motion types and
update their parameters, such as speed, acceleration, etc.

Similarly, the commands from the DT to the grippers are
processed by their internal controllers, where the human
operator can update the width/opening of the gripper and the
gripping force. The safety system stops the robots if there is
a collision or someone gets too close to the working space.

MC3: Physical sensing components
Regarding the sensors, the robotic arms contain several
internal sensors from which it is possible to collect data, such
as current position, target position, torque, current, voltage,
speed, acceleration, and so on. Some of the variables for the
robot contain their angular and cartesian value, and there
are some variables that are specific for each joint and some
that are for the whole robotic arm. We collect 117 and 31
variables for the UR5e robot and the Kuka lbr iiwa 7 robot
respectively, although only data related to robot positioning
are used in the flex-cell DT case study. For the grippers, we
collect force and width/opening values. The safety system
has a proximity sensor and internal flags in case any of the
robotic arms collide.

MC4: Physical-to-Virtual Interaction
The transmission of data between PT and DT is managed
by the DT Manager. It is possible to use the method
getAttributeValue to get the value of attributes in the PT.

Inputs and events of the flex-cell DT are managed by the
DT Manager as attributes, which refer to the streaming data
coming from the PT to the DT59.

The messages coming from the PT are fed into the flex-cell
DT every time there is a new message in the MQTT queue.
The attributes can also be updated on demand, in this case,
based on the last element in the queue.

MC5: Virtual-to-Physical Interaction
The virtual-to-physical interaction for the flex-cell DT
is twofold, namely, directly and indirectly. For direct
interaction, the DT can execute move and grasping/releasing
commands on the PT. For indirection interaction, the DT can
either raise an alarm or set a parameter on the PT, such as the
motion speed.

The transmission of data between DT and PT is managed
by the DT Manager. It is possible to use the methods
setAttributeValue and executeOperation provided by the
DT Manager. The former allows to set a value on the PT, for
example, a parameter, in case of the output of insights. The
latter allows to execute direct actions on the PT, for example,
move commands.

Outputs from DT to PT are managed as attributes for
parameter update and as operations for direct actions.

MC6: Digital Twin Services
The services that the flex-cell DT provides are as follows:
What-if simulation60 that can perform moving commands
on both robots on both physical and virtual versions

∥https://unity.com/

Prepared using sagej.cls

https://unity.com/

10 Journal Title XX(X)

Kuka LBR iiwa 7 DT UR5e DT

Operations
move_ptp_cartesian(x,y,z,a,b,c)
move_ptp_radian(q0,q1,q2,q3,q4,q5,q6)
move_linear(x,y,z,a,b,c)
move_linear_relative(x,y,z,a,b,c<,ref_system>)
move_circular(aux_point,end_point)
move_spline(spline)

Operations
set_force(f)
set_diameter(d)
pick(sl_time,d,f)
place(sl_time,d,f)
stop()

Gripper 2FG DT

Operations
moveP(x,y,z,a,b,c)
moveJ(q0,q1,q2,q3,q4,q5)
moveL(x,y,z,a,b,c)

Operations
set_force(f)
set_width(w)
pick(sl_time,w,f)
place(sl_time,w,f)
stop()

Gripper RG6 DT

Is
C
on

ne
ct
ed

To

isC
onnectedTo

Flex-cell DT

isComposedOf

isComposedOf

Behaviors
Kinematic model (D-H)
Dynamic model (Newton-Euler method)

Behaviors
Kinematic model (D-H)
Dynamic model (Newton-Euler method)

Attributes
dynamic attributes:
 current joint position 0: double
 current joint position 1: double
 ...
 external torque joint 5: double
 external torque joint 6: double
 ...
 torque Z: double

Attributes
Dynamic attributes:
 current joint position 0: double
 current joint position 1: double
 ...
 current joint temperature 0: double
 current joint temperature 1: double
 ...
 current momentum: double
 actual robot current: double
 actual robot voltage: double

Attributes
Dynamic attributes:
 current width: double
 current force: double

Attributes
Dynamic features:
 current diameter: double
 current force: double

UR5e DT

Gripper 2FG7 DT

cooperatesWith

Behaviors

Attributes

Operations

Flex-cell Digital Twin Composition Overview

Figure 3. DT composition for the flex-cell case study (blue) using the modeling approach proposed in Gil et al. 8. The flex-cell DT is
composed of four smaller DTs (green), which are defined by attributes (yellow), operations (red), behaviors (purple), and
relationships (dashed lines).

Kuka lbr iiwa 7
FMU

UR5e FMU

Kuka lbr iiwa 7

UR5e

Controller RabbitMQ FMU

Flex-cell System
Flex-cell SimulationSynchronized

behavior

Physical
Twin

Digital
Twin

Unity
Visualization

Figure 4. DT representation of the flex-cell DT in a co-simulation setting. Both real and simulated flex-cell are a composition of the
three lower blocks Controller/RabbitMQ FMU, UR5e/UR5e FMU, and Kuka lbr iiwa7/Kuka lbr iiwa 7 FMU respectively.

synchronously in a cooperative setting to explore different
scenarios. The DT can also be decoupled from the PT to
perform certain experiments and validate on the virtual flex-
cell before deployment to the physical one.
Trajectory visualization to have an idea of how the robots
are going to move for a certain move command in the flex-
cell working space (in connection with what-if simulations).

Discrete flex-cell working space-related commands that
translate the desired (X,Y, Z) position in the flex-cell to
joint angles of the robots. We use this feature as a service
of the DT since this is case-specific and is not provided by
manufacturers of industrial robots. To achieve this service,
we use the kinematic models and some transformations in
relation to the flex-cell working space to select the desired
hole and height for the assembly tasks, as shown in Figure 2.

Prepared using sagej.cls

Gil et al. 11

Table 6. Summary of the flex-cell DT case study through the characteristics of our proposed DT description framework.

Merged Characteristic Flex-cell case study
MC1: System-under-Study Manufacturing cell with independent assets (2 robotic arms, 2 grippers).
MC2: Physical acting components Controllers of the robotic arms, grippers, and safety system.
MC3: Physical sensing compo-
nents

Sensors of the robotic arms and grippers, including 117 observations for the UR5e, 31 for the
Kuka lbr iiwa 7, and two for each gripper.

MC4: Physical-to-Virtual Interac-
tion

The PT to DT interaction is managed by the DT Manager with the methods
getAttributeValue on either a periodic basis or on event.

MC5: Virtual-to-Physical Interac-
tion

The DT to PT interaction is managed by the DT Manager with the methods
setAttributeValue for parameter update and executeOperation for direct actions.

MC6: Digital Twin Services The flex-cell DT provides services for what-if simulation, trajectory visualization, discrete
working space commands, and deviation checking.

MC7: Twinning Time-scale The DT-to-PT synchronization is on demand, on a periodic basis, or on incoming events. The DT
supports slower-than-real-time, real-time, and faster-than-real-time services.

MC8: Multiplicities Each independent asset has its own DT and composition is enabled. There is no multiplicity of
the same DT class.

MC9: Life-cycle stages The services provided by the DT include the design, manufacturing, and service life-cycle phases.
Within the service phase, it supports creating, executing, analyzing, saving, and terminating. The
DTs cover the system as designed and as operated.

MC10: Digital Twin Models and
Data

The flex-cell DT is provided with data models initialized from DT schemas using the AAS
meta-model, structural models for visualization with the URDF format, and behavioral models
wrapped as FMUs for the kinematics of the robotic arms. Data in the DT are related to robot
positioning and handled as attributes, which hold the state of the twins. The number of attributes
depends on the number of available observations in the model or provided by the sensors.

MC11: Tooling and Enablers The elements supporting the services of the flex-cell DT include the DT Manager for interfacing
and access to DT services; the Robotics Toolbox and UniFMU to encapsulate the behavioral
models of the robotic arms; the URInterface, the Kukalbrinterface, ModbusTCP, MQTT, and
RabbitMQ for connectivity; Maestro and RMQFMU to run the co-simulation scenarios; URSim
to emulate the UR5e robot; Unity, ZeroMQ, and URDF for visualization; and The DTaaS
Platform to execute the DT on the cloud.

MC12: Digital Twin Constellation The orchestration of the system-as-a-whole, including the models and data, tools and enablers,
services, and physical-to-virtual and virtual-to-physical interaction is defined. The constellation
also describes how the DT behaves in the multiple scenarios for the provided services.
Additionally, some of the components are initialized from configuration files and scripts.

MC13: Twinning Process and
Digital Twin Evolution

The DT was engineered based on an existing manufacturing cell with a set of own requirements.
The evolution presents 12 milestones.

MC14: Fidelity and Validity Con-
siderations

The DT contains sufficiently accurate models for the robotic arms and overall execution. Low
coverage of the models for the grippers. The flex-cell DT has been experimentally validated and
provides mechanisms for consistency checking.

MC15: Digital Twin Technical
Connection

Connection to the physical assets needs to be done on a LAN. Several communication protocols
are used for the whole system deployment.

MC16: Digital Twin Hosting/De-
ployment

The flex-cell DT can be deployed on a LAN or on the DTaaS platform in the cloud.

MC17: Insights and Decision
Making

The flex-cell DT can provide insights in form of simulation-based analysis and semantic
reasoning.

MC18: Horizontal Integration There is horizontal integration with the flex-cell PT and infrastructure services of the DTaaS
Platform. The flex-cell DT is able to exchange information with other information systems not
limited to other DTs.

MC19: Data Ownership and Pri-
vacy

Not considered in case study.

MC20: Standardization Behavioral models conform with the FMI Standard Version 2. Twin schemas conform with the
AAS meta-model (IEC-63278-1).

MC21: Security and Safety Con-
siderations

Security aspects inherited from the DTaaS TLS. Safety aspects regarding remote operation for
accidents and collisions.

Deviation checking compares that the physical robots are
moving as expected. We use the simulations to check if there
is any kind of deviation. The DT Manager is used as the
interface to check whether physical and virtual robots are
moving similarly.

MC7: Twinning Time-scale
The DT-to-PT synchronization has two ways to be
implemented. First, one twin can be synchronized to the
values of another twin on demand by using the one of the
methods provided by the DT Manager. Second, a twin can
be synchronized through its attributes and operations on

demand either on a periodic basis or on incoming events
(applicable for the MQTT and RabbitMQ endpoints).

Additionally, the flex-cell DT operates at different rates:

Slower-than-real-time These services are adapted to the
interfaces of the DT Manager in the service layer to generate
an output, e.g., for deviation checking, cooperative motions,
or collision warnings, based on PT and simulation input data.
These services have an additional overhead which introduces
delays, and therefore, they cannot run precisely in real-time.

Prepared using sagej.cls

12 Journal Title XX(X)

Real-time Control commands, position calculation, data
logging (from the robot interfacing libraries), and visualiza-
tion.
Faster-than-real-time For virtual commissioning and
what-if simulations, and so the DT is decoupled from the PT
to run independent simulations and what-if scenarios.

MC8: Multiplicities
The flex-cell DT is addressed with a composable modeling
approach, and thus, the flex-cell DT is composed of more
than one DT instance. There are four individual DTs
corresponding to four assets in the flex-cell system, which
are then composed into robotic arm + gripper, and so
composed into the flex-cell DT, such as illustrated in
Figure 3.

Additionally, the DT for the flex-cell can have multiple
representations, i.e., multiple twins for the same physical
system. This is because 1) the system may have different
models featuring different functionalities with different
scopes; 2) the implementation through the DT Manager
enables having multiple twins for the same physical system;
and 3) due to the modeling approach with composition, it
is possible to compose smaller sub-components which are
related somehow. The current state of the flex-cell DT does
not utilize multiplicities of the same DT class.

MC9: Life-cycle stages

The services provided by the flex-cell DT include
the design, manufacturing, and service life-cycle phases
presented in Liu et al.61. Moreover, we adopt the life-cycle
phases presented in Talasila et al.19 as a reference for the
internal phases during service, namely, create, execute, save,
analyze, evolve, and terminate.

The service phase is administrated by the DT Manager,
which can be deployed from the DTaaS Platform or manually
given the case. For the (re-)design phase, the virtual
commissioning service of the DT is used, i.e., decoupled of
the PT, to validate changes to the applications to be run in the
physical system. The other life-cycle phases that are covered
in the flex-cell DT during service are the create, execute,
analyze, save, and terminate life-cycle phases.

As for the representation phase of the DT, it is as designed
(when working at the individual level) or as operated (at the
cooperative level).

MC10: Digital Twin Models and Data
The flex-cell DT contains different models, all wrapped and
described in the composed model as described in8.

Data models There is a data model for each asset, i.e.,
each robotic arm and gripper, which contains Attributes and
Operations; these are initialized from DT schemas using the
AAS meta-model. These models contain only static data and
are used to initialize the DT on the DT platform, with the
interfaces to act on the PT/simulation (i.e., DT outputs) and
to store the state of the PT/simulation (i.e., DT inputs).

Structural models Each asset, i.e., robotic arms and
grippers, has also a corresponding URDF model, which are
used uniquely for visualization. These models contain the
descriptions of the rigid bodies, such as links and joints.

Behavioral models Additionally, the robotic arms contain
behavioral models, mapped to Behaviors, which are i)
kinematic models using the Denavit-Hartenberg parameters
and ii) dynamic models with the Newton-Euler formulation
(not being used). The behavioral models are wrapped as
FMUs. There are no behavioral models for the grippers.

Data The relevant data in the flex-cell DT is related to
robot positioning on a 2D space, as it is the scope of the
DT. These data include cartesian and angular/joint positions.
The data available in the flex-cell DT are administrated as
attributes, which hold the state of the Twins. The number of
attributes depends on the observations given in the models
(for the DT) and in the streaming data59 coming from the
physical sensing components (for the PT - see MC3 for
more information). The models provide observations for the
cartesian and angular/joint positions for each robot plus any
linearly dependent transformations/combinations based on
these positions.

MC11: Tooling and Enablers

The following elements are tools and enablers for
supporting the services of the flex-cell DT:

• The DT Manager to provide the access and interfaces
to PT and DT, and to the DT services.

• The Robotics Toolbox and UniFMU to encapsulate the
kinematic models of the robotic arms.

• The URInterface, Kukalbrinterface, ModbusTCP,
MQTT, and RabbitMQ to access the physical robots
and grippers and bridge the communication to external
networks.

• Maestro and the RMQFMU to perform the syn-
chronous and coupled co-simulations.

• URSim to emulate the UR5e robot and run
experiments on it.

• Unity, ZeroMQ, and URDF for displaying visualiza-
tions.

• There is handcrafted code written on Python and
Java to bind some of the interfaces and set up the
threads/initializers for the services.

• The DTaaS Platform19 is used to orchestrate the
DT constellation and the execution of scripts from
configuration files when hosted there.

MC12: Digital Twin Constellation
Figure 5 illustrates the constellation of the flex-cell DT with
the models/data, enablers, and services that are coupled with
the disaggregrated representation of the flex-cell system.

Additionally, some of the components in the DT
constellation are initialized from configuration files. That
is, the communication interfaces for DT and PT are
initialized from configuration files using the DT Manager.
The skeletons to hold the state, that is, the data of the twins,
are initialized from the DT schema files, which in this case
is based on AAS. The co-simulation experiments are also
initialized from configuration files, defining the inputs and
outputs in the co-simulation blocks, the time-steps, and the
parameters to be passed to the involved FMUs. When using
the DTaaS Platform, scripts that are associated to life-cycle
phases automate the execution for those phases.

Regarding the slices7 of the flex-cell DT, these represent
the multiple scenarios for the existing services as follows:

Prepared using sagej.cls

Gil et al. 13

move/open/close
commands,
positions,

 discrete positions,
velocity, force

Real time visualization,
alarm of deviation,

visualization of trajectories

positions,
torque, force,

openingFlex-cell

System-under-Study

Enablers

Models/

Data

DT Manager

Kinematic
models

Discrete
working space

commands
Deviation
checking

What-if
Simulation Visualization

Maestro Robotics
Toolbox Unity

Flex-cell
space

discretization

Flex-cell DT

Constellation

DT
schemas

Robots
positioning

URDF
models

Services

Flex-cell Plate
and

Environment

Moving
actuators

Robot and
joint sensors

Opening
actuators

Opening
sensors

Flex-cell

UR5e

Kuka lbr
iiwa 7

OnRobot
RG6

Operator

OnRobot
2FG7

DT
Manager Maestro RabbitMQ

FMU

Enablers
(Comm.)

MQTT

RabbitMQ

ModBusTCP

Figure 5. Constellation 7 of the flex-cell DT, detailing the composition of the DT and the data flow.

In the scenario for what-if simulation, deviation checking,
and implicitly discrete working space commands, Figure 6
shows one of the experiments of running coupled cooperative
motions along with the co-simulation; the figure shows the
joint positions over time of the two robots. The experiment
consists of moving the robots between two different discrete
waypoints (UR5e/Kuka lbr iiwa 7) (1) (X,Y, Z) = (5, 14, 2)
/ (X,Y, Z) = (3, 10, 1), and (2) (X,Y, Z) = (4, 18, 1) /
(X,Y, Z) = (4, 7, 2). From the experiments, it is possible
to see two kinds of delays between PTs and DTs. The first
delay is due to executing the command. Although the move
commands are sent to PT and DT at the same time, there
is a communication and processing latency in the actual
controllers to start with the execution of commands. The
second delay is due to behavioral differences between PT
and DT model. The real robots take some time to perform
a motion, and the models of the DT set an approximation for
the time it takes to perform the motion. This parameter can
be updated online and has a precision of 0.05 seconds. While
the motion time is experimentally validated, there may still
be minor errors, negligible for the scope of this work.

In the scenario for what-if analysis and trajectory
visualization, Figure 7 shows the graphical representation
of the flex-cell system in Unity. The Unity application
embeds the URDF models and the incoming messages from
the virtual or real flex-cell are translated into motions,
enabling the visualization of the system as a DT (data from
simulation) or as a DS (data from real robots) respectively.
When using the virtual flex-cell decoupled from real flex-
cell, this setup is also used for virtual commissioning where
it is possible to see the trajectories of the robotic arms before
deployment.

In the scenario for deviation checking, a monitoring
function that checks for deviations at periodic intervals
is attached to the DT Manager. The function takes four
arguments, namely, PhysicalTwin object, DigitalTwin

object, VariableName string, and Tolerance percentage, and
returns true when there is a deviation in the variable between
the two objects given the tolerance, otherwise false.

MC13: Twinning Process and Digital Twin Evolution
The flex-cell DT is created with a subsequent engineering
approach since the DT is adapted to an existing product(s),
and so, it inherits its constraints and knowledge.

The particular requirements for the flex-cell DT are
as follows: (i) it needs to comply with some real-time

capabilities for control commands, data recording, and
visualization; (ii) it needs to comply with some consistency
requirements, such as that a composed DT cannot be a
composition of a robotic arm attached to the end-effector of
another robotic arm, i.e., it needs to be a gripper instead; and
(iii) the internal components of the flex-cell DT need to be
reusable.

As for the evolution, the flex-cell DT has evolved
considerably during development. Some of the steps are
reported in8,30. The most representative milestones Mi are
as follows:
M1 The DT schema-based object models for robotic arms
and grippers were designed.
M2 The object models were coupled to the DT Manager
architecture.
M3 The visualization with Unity and the URDF models
were created.
M4 The composable representation of the flex-cell was
established.
M5 The kinematic and dynamic models for the robotic arms
were designed.
M6 The space and mapping model for the flex-cell was
created.
M7 The execution of online PT-to-DT movements with
individual non-cooperative motions was achieved.
M8 The first experiments of applications for the flex-
cell discrete working space using the DT as the virtual
commissioning mechanism were successful.
M9 The skill-based engineering approach was integrated to
disaggregate the Operation into device primitives, skills, and
tasks.
M10 The kinematic models were embedded into FMUs.
M11 The co-simulation with Maestro and RMQFMU was
added to provide simulation capabilities of the coupled
cooperative motions.
M12 Synchronous cooperative experiments were successful
and used for deviation checking.

MC14: Fidelity and Validity Considerations
As for quality assurance, the validation of the flex-cell DT
has been carried out through experimental validation as
follows: The motion speed of behavioral models has been
tuned so they approximate to the actual motion trajectory.
The discrete to cartesian mapping has been tuned so the
poses for the end effector are approximately centered in
the holes of the flex-cell plate for all the feasible (X,Y, Z)

Prepared using sagej.cls

14 Journal Title XX(X)

0 2 4 6 8 10

time [s]

3

2

1

0

1

2

ra
di
an
s

Co-sim UR5e joints
{ur5e}.ur5e.actual_q0
{ur5e}.ur5e.actual_q1
{ur5e}.ur5e.actual_q2
{ur5e}.ur5e.actual_q3
{ur5e}.ur5e.actual_q4
{ur5e}.ur5e.actual_q5

0 2 4 6 8 10

time [s]

1.5

1.0

0.5

0.0

0.5

1.0

ra
di
an
s

Co-sim Kuka lbr iiwa 7 joints

{kuka}.kuka.actual_q0
{kuka}.kuka.actual_q1
{kuka}.kuka.actual_q2
{kuka}.kuka.actual_q3
{kuka}.kuka.actual_q4
{kuka}.kuka.actual_q5
{kuka}.kuka.actual_q6

0 2 4 6 8 10

time [s]

3

2

1

0

1

2

ra
di
an
s

Real UR5e joints
actual_q_0
actual_q_1
actual_q_2
actual_q_3
actual_q_4
actual_q_5

0 2 4 6 8 10

time [s]

1.5

1.0

0.5

0.0

0.5

1.0

ra
di
an
s

Real Kuka lbr iiwa 7 joints

actual_q_0
actual_q_1
actual_q_2
actual_q_3
actual_q_4
actual_q_5
actual_q_6

Figure 6. Plot of the joint positions of the robotic arms in the cooperative co-simulation setting. The vertical dashed lines indicate
the invocation of moving commands, considering the delays in the real robots.

Figure 7. Flex-cell graphical representation in Unity.

poses. The visualization in Unity has been tuned so the
poses for the robots and the motions are similar to how they
look in the physical setup. The data models, including the
composed representation and the functional requirements for
bi-directional connections have been validated through a case
study demonstration in8,30.

Additionally, the representation of the flex-cell DT on top
of the ontological model presented in8 enables consistency
checking to validate that structural constraints are complied.
the flex-cell DT uses simulation and some features of
consistency checking on top of the ontological model and

its constraints that are imposed. On the downside, the
simulation models do not consider the actual dynamics of
the system nor are calibrated to the physical conditions.

Overall, the flex-cell DT requires a certain level of fidelity
in its models to perform reasonably well with respect to
the provided services62, especially the ones related to the
positioning of the robotic arms. Note that non-sufficient
fidelity may cause the robots to collide with static objects
like the flex-cell structure, with other dynamic objects like
the other robotic arm or grippers, and with humans. This can
lead to physical damage to equipment and injuries.

Some of the limitations in terms of model fidelity are as
follows:

• The kinematic models do not include the kinematics
for the grippers.

• The trajectory generation with the kinematic models
provides certain time behavior based on an assumed
motion speed (which can be tuned during operation).
However, it does not consider the actual dynamics of
the robots, and so, it can have time offsets. Using
dynamic models may overcome this problem.

• The motions performed by the simulations may differ
from the motions performed by the actual controllers
as the algorithms that operate in actual controllers are
closed source. A more accurate representation of the
real controllers in simulation and visualization can
mitigate this problem.

Prepared using sagej.cls

Gil et al. 15

• The co-simulation executions for cooperative motions
perform a given number of steps before updating
since executing stepped simulations is computing-
demanding. Thus, the synchronization with the PT
takes longer, which can lead to additional errors in
time and accuracy in the deviation detection. This
problem can be overcome by injecting the PT state to
the co-simulation with RMQFMU every step.

MC15: Digital Twin Technical Connection

Each asset in the flex-cell has its connection requirements,
although all connections are established over TCP and
have bidirectional connection enabled. The UR5e robot is
controlled with the URInterface, the Kuka lbr iiwa 7 is
controlled with the Kukalbrinterface, and both grippers are
controlled with ModbusTCP. The robots’ particular protocols
are then bridged to MQTT (RabbitMQ is also available) to
be accessible from the DT Manager and the DTaaS Platform
given the case.

MC16: Digital Twin Hosting/Deployment
The hosting of the DT is done twofold. The first option is
hosting the flex-cell DT on a local computer where all the
network services and infrastructure can be easily deployed.
The connection to the PT is then much easier since it can
be achieved on a Local Area Network (LAN) with fewer
technical complications.

The second option is hosting the flex-cell on a external
server. In this case, we use the DTaaS platform and the
example is available on GitHub*. Additionally, when hosting
the flex-cell DT on the DTaaS platform, it needs to stick to
the structure of the platform for reusing the network and
architecture services, and the structure to run the multiple
life-cycle phases available on the platform. On the downside,
the connection to the PT is not straightforward since it needs
to be bridged between the DTaaS platform to a LAN due
to security and safety reasons. For this, a script forwarding
messages from the particular robot’s interface to and from
MQTT is used on a Raspberry PI connected to both the LAN
and the DTaaS platform brokers.

MC17: Insights and Decision Making
In terms of the decision making, although the flex-cell DT
is mostly behaving according to pre-programmed sequences,
there are two scenarios where the DT can make predictions
or decisions, namely, simulation-based analysis and semantic
reasoning. Simulation-based analysis is possible due to
including the models of the flex-cell components, for
example the kinematic models of the robotic arms, which
are used to detect anomalies or deviations and raise an
alarm. These models also enable the visualization with
Unity, which provides insight into how the trajectory will
be performed, as shown in Figure 7. Semantic reasoning is
enabled by the underlying ontological model that is used for
the composed flex-cell DT model, which enables semantic
reasoning through queries and inferences, although these are
mostly used for model/structure consistency checking of the
system than for the actual analysis in comparison to the PT.

MC18: Horizontal Integration
In the horizontal interaction of the flex-cell DT, we identified
the communication with its PT (and its sub-components) and

with some services running on the DTaaS platform (when
deployed from there), which handle the life-cycle of the flex-
cell DT. Although the flex-cell DT contains several smaller
DT sub-components, they are deployed in a centralized way,
and therefore, there is no horizontal integration among the
smaller DTs.

Overall, the flex-cell DT is able to exchange information
with other systems, including external information systems
and other DTs if required. This would require an adaptation
of the algorithms for handling messages though.

MC19: Data Ownership and Privacy
There is no consideration regarding this characteristic in the
flex-cell DT as it is an academic case study.

MC20: Standardization
The behavioral models of the flex-cell are designed in such a
way they conform with the FMI standard† Version 2, and
thus, the models are wrapped as FMUs. The data models
are imported from AAS schemas that conform with the IEC-
63278-1 standard.

MC21: Security and Safety Considerations
There are two safety considerations in the flex-cell case
study. First, the physical flex-cell is provided with a
proximity sensor which disables the execution coming from
any source to avoid accidents with nearby humans. Second,
the connection to the PT is achieved on a LAN and not
directly from the cloud due to some critical operations, such
as, for example, movement commands on the robotic arms
cannot be executed unless there is someone at the facilities
checking that the environment is safe to work to avoid
accidents in the infrastructure or even with humans. In case
the flex-cell is required to work remotely, an in-situ operator
needs to enable the connection with the cloud by initializing
the forwarding bridge and ensuring that the environment is
safe to operate.

There are no security considerations more than the
existing security layers on the DTaaS Platform19 when the
DT is being hosted there. The current security functionality
of the platform is based on signed Transport Layer Security
(TLS). No security considerations are currently considered
for the local connection.

5 Towards the Generalizability of the
Reporting Framework

With the aim of improving the generalization of the
resulting reporting framework presented in Section 3,
we use the Desktop Robotti DT case study and the
Incubator DT, presented in Section 2, to approach a
theoretical generalization of the proposed framework by
a multi-case design, as it provides a stronger basis for
theoretical generalization than a single-case design63. The
generalization of our conceptual framework through using
these two additional case studies is considered under
architectural similarity64.

To do so, we use the proposed framework to briefly
report on the Desktop Robotti DT and the Incubator DT,
as shown in Table 7 and Table 8 respectively. It is worth
noticing that the Desktop Robotti DT is a case study of DT
engineering within the robotics domain, as a mobile robot,
but the Incubator DT is a case study in a very different

Prepared using sagej.cls

16 Journal Title XX(X)

domain (food industry). Therefore, this multi-case approach
for assessing the resulting framework allows to investigate
the phenomena in the context of robotics, which would
support its generalizability in this domain, but also in a
different context, arguing for the generalizability in other
domains.

Since we are not providing a detailed description for
each characteristic as we did for the flex-cell case study,
we refer the readers to references45,48,65 and the example
implementation with the DTaaS Platform**, where more
information about the Desktop Robotti DT is found; and
to references17,31,46,49,60,66 and the publicly available GitHub
repository‡, where more information about the Incubator DT
is found.

As a remark, although the Incubator DT does not come
with an implementation on the DTaaS Platform, the specific
sub-phases within the service phase have been reported based
on those proposed for the implementation on the DTaaS.

Regarding the procedure to report these two additional
case studies was as follows: The third author, who has
previously worked on the Incubator DT, performed the report
of this case study in a table with assistance of the first author.
Similarly, the fourth author, who has previously worked on
the Desktop Robotti DT, performed the report of this case
study in a table with assistance of the first author. Both
procedures follow the resulting framework’s characteristics
and their descriptions step-by-step.

Both authors agree that the description framework is easy-
to-use and descriptive, which provides light validation of
our description framework. The description for each of the
case studies, contained in the table, took approximately
50 minutes. However, it is worth mentioning that the DTs
had already been engineered and the authors have a good
understanding of their case studies and the description
framework, which speeds up the reporting process.

6 Discussion
This section discusses the main findings of this work in
relation to DT engineering and its reporting process. It also
discusses the challenges, lessons learned, and limitations
for both fronts, namely, the DT engineering process of
the flex-cell DT and the reporting of this case study in
our proposed description framework. This discussion aims
to provide insights from our experience to readers about
both the engineering and reporting process to assist with
conducting DT case study research.

The discussion on the case study research front intends
to present the common problems that may appear in any
case study, including models, synchronization, accuracy, and
orchestration and reuse of components, among others. This
differs from common problems in reporting any modeling
or simulation research, as the DT is intended to have live
connections and multiple components and services running
at the same time, which can have the same or different time
rates and periodicity.

Similarly, the discussion on the reporting front intends to
present the problems that may appear when reporting a case
study research of a technology that still lacks standardization
and consensus. It also discusses the benefits of following
a reporting framework as a complementary resource for

conducting DT case study research as a mechanism for
internal feedback.

It is also worth discussing the relevance of using a
reporting framework as a guideline, and at some point as a
standard, to report DT case study research. Such a guideline,
in this case, our approach, encourages practitioners to report
on all the characteristics, including those that may not
be applicable or relevant for the particular scope. Hence,
the case study research becomes more transparent and
understandable to a broader community, enabling readers
to easily identify all the features having core descriptions
as a reference. This aspect also benefits authors of DT
case studies, so they can identify and further elaborate on
characteristics they are not aware of when going through
the DT engineering process, reporting the DT case study
research, or upgrading their existing DTs.

Discussion on Gaps Found
Throughout conducting this combined research for merging
taxonomies to describe DT case study research and reporting
the flex-cell DT case study, we found relevant gaps that
require further discussion and research.

First and foremost, there is a lack of standardization
for conducting and reporting DT case study research and
in the DT domain in general, which is essential for the
establishment and consolidation of DT technology17. The
ISO-2324715 and IEC-63278-116 are the two pioneering
initiatives for this technology, but they are still framed
in particular scopes, manufacturing and AAS, respectively.
Since there is no standard on how or what to describe in
a DT case study research, there are substantial differences
between different case studies and the way they are
presented, which difficults the understanding and objective
comparisons. Supporting this are the multiple definitions
for the DT concept13,20 and the found six non-overlapping
characteristics after the merge, showing that there is still lack
of consensus in this domain.

Second, and extending from the previous gap, it is difficult
to objectively assess a DT case study research without
measuring its benefits/improvements to a given process or
physical system, that is, assessing how complete, mature,
and complex a DT approach is, including its strengths
and weaknesses in a case-independent manner. Such an
assessment method can help authors to identify strengths and
weaknesses of their case studies, and readers to quickly spot
whether a DT is relevant for their interests and what they are
after. A consensual or standardized reporting framework is
a good starting point for creating an assessment framework,
where each characteristic can be weighed based on certain
criteria, and thus, the assessment framework can be easily
attachable to the reporting framework.

Finally, there are multiple cross-cutting characteristics that
may be relevant to report on DT case study research, such
as the ones presented, namely, data ownership and privacy,
standardization, and security and safety considerations.
These characteristics may be highly relevant to be reported

∗∗https://into-cps-association.github.io/DTaaS/
version0.4/user/examples/drobotti-rmqfmu/index.
html

Prepared using sagej.cls

https://into-cps-association.github.io/DTaaS/version0.4/user/examples/drobotti-rmqfmu/index.html
https://into-cps-association.github.io/DTaaS/version0.4/user/examples/drobotti-rmqfmu/index.html
https://into-cps-association.github.io/DTaaS/version0.4/user/examples/drobotti-rmqfmu/index.html

Gil et al. 17

Table 7. Brief description of the Desktop Robotti DT case study with our proposed DT description framework.

Merged Characteristic Desktop Robotti case study
MC1: System-under-Study Small prototype of a field (agricultural) robot. A mobile robot.
MC2: Physical acting components Motors for each wheel.
MC3: Physical sensing compo-
nents

RPLidar A1, IMU (Inertial Management Unit), and wheel encoders.

MC4: Physical-to-Virtual Interac-
tion

The PT sends location data at a periodic basis over RabbitMQ.

MC5: Virtual-to-Physical Interac-
tion

The DT sends emergency stops and parameter updates (e.g. by constraining the speed).

MC6: Digital Twin Services The Desktop Robotti DT provides services for monitoring: distance-to-obstacle, collision
avoidance for two cooperative Desktop Robottis, Parallel operation: comparing real and
predicted location data, Fault-injection with hardware in the loop, and Runtime model swapping:
swapping FMUs during operation to extend functionality.

MC7: Twinning Time-scale The DT-to-PT synchronization is on a periodic basis. The DT supports best-effort real-time.
MC8: Multiplicities When deployed in a cooperative setting of two Desktop Robottis, there is one DT for both, so

there is no multiplicities.
MC9: Life-cycle stages The DT provides services within the service phase. In this phase, it supports creating, executing,

and terminating. The DT covers the system as designed.
MC10: Digital Twin Models and
Data

There are a kinematic model of the robot, specifically a bicycle model with the virtual wheels
placed a the center of the front and rear axles, and an actuation model for the DC motors expressed
as a first-order system. The data of interest are related to robot positioning and velocity.

MC11: Tooling and Enablers RabbitMQ and the Robot Operating System (ROS) 67 for communication and interfacing.
Maestro and RMQFMU to run the co-simulation scenarios. The Model Swap and Fault Injection
plugins to run the DT services related to fault injection 68 and runtime model swapping 69. RViz
for visualization.

MC12: Digital Twin Constellation The orchestration of the system-as-a-whole, including the models and data, tools and enablers,
services, and physical-to-virtual and virtual-to-physical interaction is defined. The constellation
also describes how the DT behaves in the multiple scenarios for the provided services.
Additionally, some of the components are initialized from configuration files and scripts.

MC13: Twinning Process and
Digital Twin Evolution

The DT was engineered based on an existing prototype of a large-scale agricultural robot
(Robotti 70) with a subsequent engineering approach. The evolution presents five milestones:
the setup of the parallel operation, enhancement with fault-injection, time discrepancy detection
(between real and simulated/DT time), runtime model-swapping, collision zone detection for a
fleet of DRs.

MC14: Fidelity and Validity Con-
siderations

The DT contains medium to high fidelity models. The Desktop Robotti DT has been
experimentally validated.

MC15: Digital Twin Technical
Connection

The PT-to-DT connection is done over Wi-Fi on a laptop using RabbitMQ and ROS.

MC16: Digital Twin Hosting/De-
ployment

The Desktop Robotti DT can be deployed locally on a LAN or on the DTaaS platform in the
cloud.

MC17: Insights and Decision
Making

The DT can provide insights into visualization of the robot’s location through RViz coupled to
the PT (as a DS) or to the DT.

MC18: Horizontal Integration There is horizontal integration with the Desktop Robotti PT and infrastructure services of the
DTaaS Platform. The Desktop Robotti DT is able to exchange information with other information
systems not limited to other DTs over RabbitMQ.

MC19: Data Ownership and Pri-
vacy

Not considered.

MC20: Standardization Communication is carried out using AMQP standard via RabbitMQ. Behavioral models conform
with the FMI standard version 2.

MC21: Security and Safety Con-
siderations

Security aspects inherited from the DTaaS TLS. Safety aspects regarding collision zones
avoidance.

on industrial and commercial DT applications, where ethical
and technical aspects matter for the long-term support. While
our scope did not focus on exploring these cross-cutting
characteristics, we encourage further research on these, so
they can be integrated to the reporting framework presented
here as optional characteristics.

Challenges and Lessons Learned: Case Study

Along the development of the flex-cell case study, we
identified some relevant challenges and lessons learned that
are worth mentioning and can help practitioners who are

interested in the DT engineering process for their case
studies.

The most challenging aspect of this case study so
far is related to the models and their integration in a
cooperative-synchronized setting. This is due to having
multiple modeling approaches for robotic arms for different
components, e.g., kinematics, dynamics, visualization,
programming, etc. Therefore, it is difficult to integrate all of
them into a unique DT if the scope is a bit loose. Thus, it is
better to narrow down the scope according to the applications
that are needed, and so, choose the appropriate models for
that scope. In other words, one should start from the expected
services which come from the requirements, and from there,

Prepared using sagej.cls

18 Journal Title XX(X)

Table 8. Brief description of the Incubator DT case study with our proposed DT description framework.

Merged Characteristic Incubator case study
MC1: System-under-Study A Styrofoam box containing a lid, a heating element, and fan, controlled by a Raspberry Pi, for

incubating tempeh.
MC2: Physical acting components Heating element and fan.
MC3: Physical sensing compo-
nents

3 temperature sensors (2 inside and 1 outside).

MC4: Physical-to-Virtual Interac-
tion

The controller in the PT sends sensor and actuator data on a periodic basis over RabbitMQ

MC5: Virtual-to-Physical Interac-
tion

The DT sends new parameters of the controller, or desired temperature, to the controller in the
PT.

MC6: Digital Twin Services Heater state estimation, real-time (and historical) visualization, anomaly detection, what-if
simulations, reconfiguration according to state of the lid, controller parameters optimization.

MC7: Twinning Time-scale The DT-to-PT synchronization occurs every time the PT sends a message to the DT (on a periodic
basis).

MC8: Multiplicities The current implementation has no multiplicities, however, it is possible to deploy multiple DTs
for the same PT as proposed in 31.

MC9: Life-cycle stages The DT supports the design and the service phases. In the service phase, it supports creating,
executing, saving, analyzing, evolving, and terminating.

MC10: Digital Twin Models and
Data

There are plant models (2-parameter and 4-parameter ordinary different equations, and artificial
neural network models for plant and state estimator), controller models (state machine),
environment models (room temperature prediction), CAD models for 3D visualization, and
various couplings between the plant, controller, and environment, models. The data of interest
are related to temperature, actuation (on/off state of the actuators), and state of the controller.

MC11: Tooling and Enablers RabbitMQ for communication, InfluxDB for storing timeseries data, Docker for containerization,
HOCON for storing configuration files, Godot for 3D visualization, and various Python libraries
(e.g., python-control, SciPy).

MC12: Digital Twin Constellation The orchestration of the system-as-a-whole is carried out by micro-services. These micro-
services set up the multiple components from configuration files, including the models and
data, tools and enablers, services, and physical-to-virtual and virtual-to-physical interaction. It is
possible to leave aside some of the micro-services when initializing the DT for testing purposes.

MC13: Twinning Process and
Digital Twin Evolution

The DT was engineered based on a joint engineering approach. For the evolution, 10 milestones
have been defined: identifying the physics for the PT, building the plant models with,
characterizing the heating power, building the first physical prototype, experimentally refining
the parameters for the plant model, creating the controller model, the deploying the controller
code into the physical controller, deploying the visualization service, providing services for state
estimation and anomaly detection, and providing the service for optimizing the control policy.

MC14: Fidelity and Validity Con-
siderations

The models have been calibrated against experimental data and the predictive accuracy of the
best model is within 2°C. The models have been validated in a controlled environment.

MC15: Digital Twin Technical
Connection

The PT-to-DT connection is done over Wi-Fi on a laptop using RabbitMQ.

MC16: Digital Twin Hosting/De-
ployment

The Incubator DT is deployed locally on a LAN.

MC17: Insights and Decision
Making

The DT can provide visualization of the current state and historical data, what-if analysis for
future behavior under different controller configurations, and control policy updates to the PT.

MC18: Horizontal Integration There is horizontal integration with the micro-services of the Incubator DT. The DT is able to
exchange information with other information systems over RabbitMQ.

MC19: Data Ownership and Pri-
vacy

Datasets have been provided online to the public. No privacy-related data are stored.

MC20: Standardization Communication is carried out using AMQP standard via RabbitMQ. Behavioral models have
been produced following the FMI standard version 2.

MC21: Security and Safety Con-
siderations

Communication can be TLS encripted through the RabbitMQ broker. The physical controller
counts with a safety consideration that turns off system if the temperature read is above 60°C or
if the network connection is unstable.

plan the modeling and orchestration tasks accordingly. The
current scope of the flex-cell is related to positioning, but it
may be broadened to cover other relevant aspects.

The details of the challenges found are as follows:

Model accuracy The higher the accuracy in the models
behind the DT, the better the DT can represent and interact
with the PT62. However, creating accurate models can be
tricky, especially because it may need time and several
iterations between the DT and PT to fine-tune them. A high-
accuracy model can also slow down the computation process,

therefore, the accuracy level needs to be aligned with the
expectations and scope.
Reusable/generalizable modules for optimization It is
important that the DT has some direct actions based on
improved plans and inferred sequences and some indirect
actions on the PT in terms of optimization, improvement,
self-adaption, etc. However, these kinds of services are
usually designed case-specific and are hard to reuse, making
the incorporation of them a challenging task.
Synchronous and asynchronous messaging Even though
bidirectional communication between PT and DT is a

Prepared using sagej.cls

Gil et al. 19

must, it can be complex to administrate synchronous and
asynchronous messaging, especially when the DTs are
created without the support of any existing Internet of Things
or DT frameworks that already provide a communication
middleware. Even so, when processing asynchronous events,
it is challenging to manage how the DT responds/reacts to
them in a smart and easy-to-deploy way.
Formally verifying the DT for its scope It can be the case
that we know exactly what the DT is supposed to do, but
the software, models, and their integration, are not formally
verified. Formal verification can add extra overhead and extra
engineering effort, but it may be worth it if the scope requires
additional safety.
Environment and uncertainty These aspects play an
important role in the DT development and execution. The
DT engineering is much easier when the environment
is controlled, such as the case of the flex-cell system,
where the uncertainty is considerably reduced, and thus,
not considered. In other cases, where the DT is to run in
unknown environments, the uncertainty increases and needs
to be approached as a critical factor of the DT.

As for lessons learned, these are as follows:

Multiplicity Although the concept of multiplicity in DTs
is controversial14, we find it better to use multiple DTs for
representing multiple components instead of a big DT to
cover everything. It may also be useful in the case a physical
counterpart has more than one DT, each featuring different
models that are comparable.

Orchestration Creating and running DTs is a task that
requires the orchestration of several components, namely,
models, enablers, and services, i.e., the DT constellation7.
This also involves the use of infrastructure services related
to communication that are required to bind the PT to the
DT and vice-versa. It is suitable to have strategies for the
orchestration of these multiple components to lift the system
from configuration files that are generalizable for different
DT use cases.

Simulation models Although there is no consensus or
standards providing the guidelines for the right models to
be used in a DT, simulation models that support coupled
and synchronized behavior are highly recommended. This
can help the DT in the dimension of horizontal integration,
being able to estimate, predict, or compute the behavior of
the PT and its relationships with the environment or external
independent systems.

Challenges and Lessons Learned: Reporting
Similarly, we also identified relevant challenges and lessons
learned regarding the reporting process of a DT case study.
This is especially evident for some characteristics that are
difficult to describe in a textual description. However, some
kind of exemplification helps to complement the answers. On
the other hand, having a guideline for the reporting process
assists practitioners in their writing, and makes the report
understandable to a broader audience. Moreover, the more
complete the set of characteristics to report on, the more clear
the report becomes, but the more challenging it becomes to
write.

The unified characteristic framework proposed in this
paper is a strong guideline for reporting a DT case study,
coming from the merge of three very complete description
frameworks. Therefore, we encourage readers to adopt these
systematic reporting principles presented here to report their
DT case study research.

The details of the challenges found are as follows:

Describing characteristics in words There are some char-
acteristics that are difficult to explain in words. The expla-
nation can be accompanied by exemplification, such as dia-
grams, figures, and results, which can provide more meaning
and make the descriptions clearer.

Reporting all the characteristics This point can be com-
plex for some case studies, where there is no clear view of all
aspects of the DTs. Nevertheless, these characteristics come
from generalized requirements for DTs, which may provide
a more complete and reproducible description of the DT and
its engineering process.

Common understanding Since the DT is a modern concept
and is approached by audiences/communities of multi-
disciplinary knowledge background, it is difficult to have a
common understanding for some terminology, which may
differ from one technical society to another. There is also
lack of standardization14,17, where the ISO-2324715 and the
IEC-63278-116 are pioneer standards for DTs.

As for lessons learned, these are as follows:

Trivial vs non-trivial characteristics There are some char-
acteristics that can be answered straightforwardly, such as
describing inputs and outputs, whereas there are others
that require more elaboration, such as describing the DT
constellation. This provides a sense of where should the
report (and also the DT implementation) place more effort. A
clearer description of the non-trivial characteristics provides
better traceability of the DT engineering process, and thus,
the process can be more easily reproducible by practitioners.

Using a reporting framework for internal feedback
Most DT case studies are reported on individual
requirements, and therefore, they dismiss reporting on
dimensions that can be relevant to other practitioners. Using
a reporting framework helps to overcome this problem. A
reporting framework can also be used for internal feedback
during the engineering process to find out the maturity level
of the DT and which of its dimensions require further work.

Limitations of This Study
The primarily identified limitations of this case study are in
relation to the case study and the reporting process.

Case Study

Internal validity
Different controllers The controllers of the simulated
robots may slightly differ from how the real controllers of the
physical robots behave since the source of the real controllers
is closed. It also applies to the visualized motions in Unity
since the simulation engine has its own settings, which

Prepared using sagej.cls

20 Journal Title XX(X)

are not necessarily identical to the physical controllers. A
potential solution for this problem is using a more accurate
representation of the real controllers in both the simulation
and visualization.
Model fidelity and validation Although the models used in
the flex-cell DT have been experimentally validated to be
sufficient for robot positioning, these still introduce error for
accurate movements. These models do not include time, and
therefore, timing does not necessarily correspond to how the
real robots will move. The parameter for motion timing has a
precision of 0.05 seconds and can be updated online, which
has been experimentally validated to be sufficient for the
flex-cell DT case study. Nevertheless, upgrading the models
to include dynamics where time is considered would improve
this aspect. Additionally, there are no behavioral models for
the grippers.
Observations The kuka lbr iiwa 7 does not provide certain
observations for speed and acceleration, which increases the
complexity of including a calibrated dynamics model for this
robot. Similarly, the number of observations obtained from
the grippers is low, which limits the variables where the DT
can act/react over.
Delays The execution of commands in the real flex-cell
can have some latency since it is prone to network and
computation delays which are not further analyzed in this
study.

External validity

Use of the running example for external validity
Although there are publicly available examples of the
flex-cell DT and the Desktop Robotti DT on the DTaaS
platform, readers may have limited access to use our hosted
version of the DTaaS Platform and its services to run
experiments for external validity. Readers can refer to the
open-source code of the DTaaS†† which they can use to set
up their own environment and services as needed.

Reporting

Internal validity

Bias in the report The case studies presented in this work
have been executed and reported from the empirical and
personal experiences of the authors, which could lead to bias.

Selection of reference reporting frameworks This study
selected three reference frameworks for the merging process
based on the rationale described in Section 3, which may
have led to the exclusion of other relevant dimensions when
reporting DT case studies. This work is not performing a
systematic tertiary survey of other frameworks since we
believe the field is not yet sufficiently mature for this. Thus,
the focus of this work is more on the practical explanation of
DTs (in particular our DT cases) rather than the evaluation of
the academic literature side, which finds a balance between
idealization and practice64. This selection is also a trade-
off because the more reference frameworks we consider, the
more difficult the merging becomes.

Merging process Although we followed the methodology
by Kundisch et al.56 for the merging process, the result
may still be prone to different interpretation since it comes
from our subjective perception. This potential limitation is

mitigated by the fact that we have extensive experience in
DT implementation and description. We tried to reuse terms
and descriptions from the three reference frameworks and
triangulate among them.

External validity

Open data There are no open data to compare the results
presented in this report. However, the reader can refer to
the publicly available examples for extra information on the
technical details of the case studies.

Generalizability The generalizability of the reporting
frameworks was approached by a multi-case design of three
case studies, two within the same domain and one from a
different domain. This fact may limit the generalizability
of the framework to be only applicable to the domains of
the presented case studies or domains with architectural
similarity.

7 Concluding Remarks
This paper presents an approach to unify the characteristics
to be reported in DT case study research, by systematically
merging three description frameworks for DTs. As a result
of the merging process, we have identified eighteen funda-
mental characteristics and three cross-cutting characteristics
that are relevant to be reported on DT case studies. This
approach is proposed as a solution for a reporting framework
in a domain that is lacking standardization and guidelines
in this regard. Therefore, we encourage the DT community
to adopt this reporting mechanism to report their DT case
studies.

The main outcomes of this work are in relation to i) a
reporting framework for DT case studies that encourages
authors to report and elaborate on a set of fundamental
and consistent characteristics of DTs, so the reports are
more transparent and understandable to readers; ii) the use
of a sufficiently complex DT case study in cooperative
robotic arms to showcase the framework, reporting on
the 18 fundamental characteristics and two cross-cutting
characteristics (since one cross-cutting characteristic is not
considered); iii) the use of two additional case studies,
one within robotics and one within the food industry,
which are briefly showcased to elaborate on the theoretical
generalizability of the framework; and iv) the provision of
the main gaps found, challenges, and lessons learned that
arose throughout conducting this research in relation to the
DT engineering and reporting processes.

Future Work
Both the implementation and reporting fronts still

face technical challenges and limitations that are worth
addressing as potential research directions in the DT domain.

First, regarding the case study, it is continuing to evolve,
mostly in terms of applications and services, such as
collision detection, optimization of assembly, and flexible
and reconfigurable sequences. The ongoing work of the flex-
cell DT focuses on the generation of sequences for flexible
manufacturing in a cooperative setting by integrating the

††https://github.com/INTO-CPS-Association/DTaaS

Prepared using sagej.cls

https://github.com/INTO-CPS-Association/DTaaS

Gil et al. 21

skill-based programming approach71. Another future work
is in relation to integrating different models with a similar
scope in the flex-cell DT with the purpose of analyzing
the advantages of including control software, dynamics, and
model verification that are part of the RoboStar tools72.

Second, regarding the reporting framework, we foresee
a potential to extend the reporting framework with a
case-independent mechanism for assessing DT case study
research. The framework can also be extended to support
the identification of supplementary material, such as figures,
diagrams, and so on, in characteristics that require it.
Additionally, as we did not perform any systematic review on
existing frameworks for reporting DT, we call on the research
community to go farther, perform these surveys and elaborate
on a standardized reporting framework for DTs.

Acknowledgements

This work has been partially funded by the Ringkøbing-Skjern
Municipality, Denmark, under the Framework Collaboration
Agreement for Aarhus University Digital Transformation Lab-
Skjern. The authors are grateful to the Poul Due Jensen
Foundation, which has supported the establishment of the Center
for Digital Twin Technology at Aarhus University. The authors
also sincerely thank Dr. Istvan David (McMaster University) for
his insightful recommendations concerning our methodology, and
Dr. Benoit Combemale (University of Rennes) for his suggestion
on representing the communication enablers in the constellation
figure.

References

1. Kritzinger W, Karner M, Traar G et al. Digital
Twin in manufacturing: A categorical literature review and
classification. In IFAC, volume 51. Elsevier, pp. 1016–1022.
DOI:10.1016/j.ifacol.2018.08.474.

2. Ji T, Huang H and Xu X. Digital Twin Technology - A
bibliometric study of top research articles based on Local
Citation Score. Journal of Manufacturing Systems 2022;
64(April): 390–408. DOI:10.1016/j.jmsy.2022.06.016. URL
https://doi.org/10.1016/j.jmsy.2022.06.016.

3. Barbieri G, Bertuzzi A, Capriotti A et al. A virtual
commissioning based methodology to integrate digital twins
into manufacturing systems. Production Engineering 2021;
15(3-4): 397–412. DOI:10.1007/s11740-021-01037-3. URL
https://doi.org/10.1007/s11740-021-01037-3.

4. Ribeiro da Silva E, Assad Neto A and Nielsen CP. Digital
twins: Making it feasible for smes. In The Future of
Smart Production for SMEs: A Methodological and Practical
Approach Towards Digitalization in SMEs. Springer. ISBN
978-3-031-15428-7, 2023. pp. 343–348. DOI:10.1007/
978-3-031-15428-7_30. URL https://doi.org/10.1007/

978-3-031-15428-7_30.
5. Xu W, Cui J, Li L et al. Digital twin-based industrial cloud

robotics: Framework, control approach and implementation.
Journal of Manufacturing Systems 2021; 58: 196–209. DOI:
10.1016/j.jmsy.2020.07.013.

6. Tao F, Xiao B, Qi Q et al. Digital twin modeling. Journal
of Manufacturing Systems 2022; 64(July): 372–389. DOI:
10.1016/j.jmsy.2022.06.015. URL https://doi.org/10.

1016/j.jmsy.2022.06.015.

7. Oakes B, Parsai A, Van Mierlo S et al. Improving
Digital Twin Experience Reports. In Proceedings of the 9th
International Conference on Model-Driven Engineering and
Software Development. Online: SCITEPRESS - Science and
Technology Publications. ISBN 978-989-758-487-9, pp. 179–
190. DOI:10.5220/0010236101790190. URL https://doi.

org/10.5220/0010236101790190.
8. Gil S, Mikkelsen PH, Tola D et al. A Modeling Approach

for Composed Digital Twins in Cooperative Systems. In
2023 IEEE 28th International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE. ISBN
9798350339918, pp. 1–8. DOI:10.1109/ETFA54631.2023.
10275601.

9. Malik AA and Brem A. Digital twins for collaborative
robots: A case study in human-robot interaction. Robotics
and Computer-Integrated Manufacturing 2021; 68(September
2019): 102092. DOI:10.1016/j.rcim.2020.102092. URL
https://doi.org/10.1016/j.rcim.2020.102092.

10. Mazumder A, Sahed M, Tasneem Z et al. Towards next
generation digital twin in robotics: Trends, scopes, challenges,
and future. Heliyon 2023; 9(2): e13359. DOI:10.1016/j.
heliyon.2023.e13359.

11. Heithoff M, Konersmann M, Michael J et al. Challenges of
Integrating Model-Based Digital Twins for Vehicle Diagnosis.
In 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-
C). 01, IEEE. ISBN 9798350324983, pp. 470–478. DOI:
10.1109/MODELS-C59198.2023.00082.

12. Michael J, Pfeiffer J, Rumpe B et al. Integration Challenges
for Digital Twin Systems-of-Systems. In Proc. of SESoS.
IEEE/ACM, pp. 9–12. DOI:10.1145/3528229.3529384.

13. VanDerHorn E and Mahadevan S. Digital Twin: Generaliza-
tion, characterization and implementation. Decision Support
Systems 2021; 145(February): 113524. DOI:10.1016/j.dss.
2021.113524. URL https://doi.org/10.1016/j.dss.

2021.113524.
14. Dalibor M, Jansen N, Rumpe B et al. A Cross-Domain

Systematic Mapping Study on Software Engineering for
Digital Twins. Journal of Systems and Software 2022; 193:
111361. DOI:10.1016/j.jss.2022.111361.

15. ISO. Automation systems and integration - Digital twin
framework for manufacturing. ISO 23247:2021(E) ed. Geneva,
Switzerland: International Organization for Standardization,
2021. URL https://www.iso.org/standard/78743.

html.
16. IEC. Asset Administration Shell for industrial applications

- Part 1: Asset Administration Shell structure. IEC 63278-
1:2023 ed. Geneva, Switzerland: International Electrotechnical
Commission, 2023. URL https://webstore.iec.ch/

publication/65628.
17. Gil S, Mikkelsen PH, Gomes C et al. Survey on open-source

digital twin frameworks–A case study approach. Software:
Practice and Experience 2024; 54(6): 929–960. DOI:10.1002/
spe.3305.

18. Jones D, Snider C, Nassehi A et al. Characterising the
Digital Twin: A systematic literature review. CIRP Journal
of Manufacturing Science and Technology 2020; 29: 36–52.
DOI:10.1016/j.cirpj.2020.02.002. URL https://doi.org/

10.1016/j.cirpj.2020.02.002.
19. Talasila P, Gomes C, Mikkelsen PH et al. Digital twin as

a service (dtaas): A platform for digital twin developers and

Prepared using sagej.cls

https://doi.org/10.1016/j.jmsy.2022.06.016
https://doi.org/10.1007/s11740-021-01037-3
https://doi.org/10.1007/978-3-031-15428-7_30
https://doi.org/10.1007/978-3-031-15428-7_30
https://doi.org/10.1016/j.jmsy.2022.06.015
https://doi.org/10.1016/j.jmsy.2022.06.015
https://doi.org/10.5220/0010236101790190
https://doi.org/10.5220/0010236101790190
https://doi.org/10.1016/j.rcim.2020.102092
https://doi.org/10.1016/j.dss.2021.113524
https://doi.org/10.1016/j.dss.2021.113524
https://www.iso.org/standard/78743.html
https://www.iso.org/standard/78743.html
https://webstore.iec.ch/publication/65628
https://webstore.iec.ch/publication/65628
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.cirpj.2020.02.002

22 Journal Title XX(X)

users. In IEEE Smart World Congress (SWC). Portsmouth, UK:
IEEE, pp. 1–8. DOI:10.1109/SWC57546.2023.10448890.

20. Wortmann A. Digital Twin definitions. https:

//awortmann.github.io/research/digital_twin_

definitions/, 2024. Accessed on March 3, 2024.
21. Lehner D, Pfeiffer J, Tinsel EF et al. Digital Twin

Platforms: Requirements, Capabilities, and Future Prospects.
IEEE Software 2022; 39(2): 53–61. DOI:10.1109/MS.2021.
3133795.

22. Schluse M, Priggemeyer M, Atorf L et al. Experimentable
Digital Twins-Streamlining Simulation-Based Systems Engi-
neering for Industry 4.0. IEEE Transactions on Industrial
Informatics 2018; 14(4): 1722–1731. DOI:10.1109/TII.2018.
2804917.

23. Gomes C, Thule C, Broman D et al. Co-simulation: A survey.
ACM Computing Surveys 2018; 51(3). DOI:10.1145/3179993.

24. Frasheri M, Ejersbo H, Thule C et al. Rmqfmu: Bridging the
real world with co-simulation for practitioners. In Macedo
HD, Thule C and Pierce K (eds.) Proceedings of the 19th
International Overture Workshop. Overture, pp. 66–80.

25. Zambrano V, Mueller-Roemer J, Sandberg M et al. Indus-
trial digitalization in the industry 4.0 era: Classification,
reuse and authoring of digital models on digital twin plat-
forms. Array 2022; 14: 100176. DOI:10.1016/j.array.
2022.100176. URL https://www.sciencedirect.com/

science/article/pii/S2590005622000352.
26. Aheleroff S, Xu X, Zhong RY et al. Digital Twin

as a Service (DTaaS) in Industry 4.0: An Architec-
ture Reference Model. Advanced Engineering Informat-
ics 2021; 47: 101225. DOI:https://doi.org/10.1016/j.aei.
2020.101225. URL https://www.sciencedirect.com/

science/article/pii/S1474034620301944.
27. Talasila P, Crăciunean DC, Bogdan-Constantin P et al. Com-

parison Between the HUBCAP and DIGITBrain Platforms
for Model-Based Design and Evaluation of Digital Twins.
In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 13230 LNCS. ISBN 9783031124280,
pp. 238–244. DOI:10.1007/978-3-031-12429-7_17.

28. Human C, Basson AH and Kruger K. A design framework for
a system of digital twins and services. Computers in Industry
2023; 144(June 2022): 103796. DOI:10.1016/j.compind.2022.
103796. URL https://doi.org/10.1016/j.compind.

2022.103796.
29. Tola D, Madsen E, Gomes C et al. Towards easy robot

system integration: Challenges and future directions. In SII.
IEEE/SICE, pp. 77–82. DOI:10.1109/SII52469.2022.9708846.

30. Gil S, Schou C, Mikkelsen PH et al. Integrating Skills
into Digital Twins in Cooperative Systems. In 2024
IEEE/SICE International Symposium on System Integration
(SII). IEEE. ISBN 9798350312072, pp. 1124–1131. DOI:
10.1109/SII58957.2024.10417610.

31. Lehner D, Gil S, Mikkelsen PH et al. An architectural
extension for digital twin platforms to leverage behavioral
models. In 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE). pp. 1–8. DOI:
10.1109/CASE56687.2023.10260417.

32. Hansen ST, Gomes CAG, Najafi M et al. The fmi 3.0 standard
interface for clocked and scheduled simulations. Electronics
2022; 11(21). DOI:10.3390/electronics11213635. URL
https://www.mdpi.com/2079-9292/11/21/3635.

33. Thule C, Lausdahl K, Gomes C et al. Maestro: The INTO-CPS
co-simulation framework. Simulation Modelling Practice and
Theory 2019; 92(August 2018): 45–61. DOI:10.1016/j.simpat.
2018.12.005.

34. Corke P and Haviland J. Not your grandmother’s toolbox-the
robotics toolbox reinvented for python. In ICRA. IEEE, pp.
11357–11363.

35. Legaard CM, Tola D, Schranz T et al. A universal
mechanism for implementing functional mock-up units. In
11th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications. SIMULTECH,
Virtual Event, pp. 121–129.

36. Satya Durga Manohar Sahu V, Samal P and Kumar Panigrahi
C. Modelling, and control techniques of robotic manipulators:
A review. In Materials Today: Proceedings, volume 56.
Elsevier Ltd, pp. 2758–2766. DOI:10.1016/j.matpr.2021.10.
009. URL https://doi.org/10.1016/j.matpr.2021.

10.009.
37. Das A and Nabi M. A review on Soft Robotics: Modeling,

Control and Applications in Human-Robot interaction. In
Proceedings - 2019 International Conference on Computing,
Communication, and Intelligent Systems, ICCCIS 2019,
volume 2019-Janua. ISBN 9781728148267, pp. 306–311.
DOI:10.1109/ICCCIS48478.2019.8974461.

38. Madsen E, Tola D, Hansen C et al. AURT: A Tool for
Dynamics Calibration of Robot Manipulators*. In Proc. of
SII. IEEE/SISE. ISBN 9781665445405, pp. 190–195. DOI:
10.1109/SII52469.2022.9708769.

39. Azizkhani M, Godage IS and Chen Y. Dynamic Control of
Soft Robotic Arm: A Simulation Study. IEEE Robotics and
Automation Letters 2022; 7(2): 3584–3591. DOI:10.1109/
LRA.2022.3148437.

40. Kousi N, Gkournelos C, Aivaliotis S et al. Digital twin for
adaptation of robots’ behavior in flexible robotic assembly
lines. In Procedia Manufacturing - CARV, volume 28. Elsevier,
pp. 121–126. DOI:10.1016/j.promfg.2018.12.020.

41. Gualtieri L, Rauch E and Vidoni R. Methodology for
the definition of the optimal assembly cycle and calculation
of the optimized assembly cycle time in human-robot
collaborative assembly. The International Journal of Advanced
Manufacturing Technology 2021; 113(7): 2369–2384. DOI:
10.1007/s00170-021-06653-y.

42. Bilberg A and Malik AA. Digital twin driven human-robot
collaborative assembly. CIRP Annals 2019; 68(1): 499–502.
DOI:10.1016/j.cirp.2019.04.011.

43. Oakes BJ, Parsai A, Meyers B et al. A digital
twin description framework and its mapping to Asset
Administration Shell. In Model-Driven Engineering and
Software Development, Communications in Computer and
Information Science, volume 1708. Springer, pp. 1–24. DOI:
10.1007/978-3-031-38821-7_1. URL https://doi.org/

10.1007/978-3-031-38821-7_1.
44. Clements P and Northrop L. Software product lines. Addison-

Wesley Boston, 2002.
45. Lumer-Klabbers G, Hausted JO, Kvistgaard JL et al.

Towards a digital twin framework for autonomous robots.
In Proceedings - 2021 IEEE 45th Annual Computers,
Software, and Applications Conference, COMPSAC 2021.
IEEE. ISBN 9781665424639, pp. 1254–1259. DOI:10.1109/
COMPSAC51774.2021.00174.

Prepared using sagej.cls

https://awortmann.github.io/research/digital_twin_definitions/
https://awortmann.github.io/research/digital_twin_definitions/
https://awortmann.github.io/research/digital_twin_definitions/
https://www.sciencedirect.com/science/article/pii/S2590005622000352
https://www.sciencedirect.com/science/article/pii/S2590005622000352
https://www.sciencedirect.com/science/article/pii/S1474034620301944
https://www.sciencedirect.com/science/article/pii/S1474034620301944
https://doi.org/10.1016/j.compind.2022.103796
https://doi.org/10.1016/j.compind.2022.103796
https://www.mdpi.com/2079-9292/11/21/3635
https://doi.org/10.1016/j.matpr.2021.10.009
https://doi.org/10.1016/j.matpr.2021.10.009
https://doi.org/10.1007/978-3-031-38821-7_1
https://doi.org/10.1007/978-3-031-38821-7_1

Gil et al. 23

46. Feng H, Gomes C, Thule C et al. The Incubator Case
Study for Digital Twin Engineering. journal=arXiv preprint
arXiv:210210390, 2021; : 1–18URL http://arxiv.org/

abs/2102.10390. 2102.10390.
47. Kakavandi F, Gomes C, Reus RD et al. Towards

developing a digital twin for a manufacturing pilot line: An
industrial case study. In Digital Twin Driven Intelligent
Systems and Emerging Metaverse. Springer Nature Singapore.
ISBN 9789819902521, 2023. pp. 39–64. DOI:10.1007/
978-981-99-0252-1. URL http://dx.doi.org/10.1007/

978-981-99-0252-1{_}2.
48. Foldager F, Balling O, Gamble C et al. Design

Space Exploration in the Development of Agricultural
Robots. In AgEng conference. Wageningen, The Netherlands:
Wageningen University, pp. 60–61.

49. Feng H, Gomes C, Gil S et al. Integration Of The Mape-K
Loop In Digital Twins. In Annual Modeling and Simulation
Conference (ANNSIM 2022). IEEE, pp. 102–113. DOI:10.
23919/annsim55834.2022.9859489.

50. Wright T, Gomes C and Woodcock J. Formally verified self-
adaptation of an incubator digital twin. In Margaria T and
Steffen B (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Practice. Cham: Springer Nature
Switzerland. ISBN 978-3-031-19762-8, pp. 89–109.

51. Steinkraus KH, Hwa YB, Van Buren J et al. Studies on tempeh.
an indonesian fermented soybean food. Food Research 1960;
25: 777–788.

52. Zhang H, Li G, Hatledal LI et al. A digital twin of the
research vessel gunnerus for lifecycle services: Outlining key
technologies. IEEE Robotics & Automation Magazine 2022; .

53. Guerra-Zubiaga D, Kuts V, Mahmood K et al. An approach to
develop a digital twin for industry 4.0 systems: manufacturing
automation case studies. International Journal of Computer
Integrated Manufacturing 2021; 34(9): 933–949. DOI:10.
1080/0951192X.2021.1946857. URL https://doi.org/

10.1080/0951192X.2021.1946857.
54. David I, Archambault P, Wolak Q et al. Digital twins for

cyber-biophysical systems: Challenges and lessons learned.
In 26th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2023,
Västerås, Sweden, October 1-6, 2023. IEEE, pp. 1–12. DOI:
10.1109/MODELS58315.2023.00014. URL https://doi.

org/10.1109/MODELS58315.2023.00014.
55. Onaji I, Tiwari D, Soulatiantork P et al. Digital

twin in manufacturing: conceptual framework and case
studies. International Journal of Computer Integrated
Manufacturing 2022; 35(8): 831–858. DOI:10.1080/
0951192X.2022.2027014. URL https://doi.org/10.

1080/0951192X.2022.2027014.
56. Kundisch D, Muntermann J, Oberländer AM et al. An

Update for Taxonomy Designers: Methodological Guidance
from Information Systems Research. Business and Information
Systems Engineering 2022; 64(4): 421–439. DOI:10.1007/
s12599-021-00723-x.

57. Yin RK. Case study research: Design and methods, volume 6.
sage, 2018.

58. Runeson P and Höst M. Guidelines for conducting
and reporting case study research in software engineering.
Empirical Software Engineering 2009; 14(2): 131–164. DOI:
10.1007/s10664-008-9102-8.

59. Oakes BJ, Meyers B, Janssens D et al. Structuring and
accessing knowledge for historical and streaming digital twins.
In First Workshop on Ontology-Driven Conceptual Modeling
of Digital Twins, CEUR Workshop Proceedings, volume 2941.
CEUR-WS.org, pp. 1–13. URL https://ceur-ws.org/

Vol-2941/paper17.pdf.
60. Feng H, Gomes C, Thule C et al. Introduction to digital

twin engineering. In 2021 Annual Modeling and Simulation
Conference (ANNSIM). IEEE, pp. 1–12. DOI:10.23919/
annsim52504.2021.9552135.

61. Liu M, Fang S, Dong H et al. Review of digital twin about
concepts, technologies, and industrial applications. Journal
of Manufacturing Systems 2021; 58(PB): 346–361. DOI:
10.1016/j.jmsy.2020.06.017. URL https://doi.org/10.

1016/j.jmsy.2020.06.017.
62. Oakes BJ, Gomes C, Larsen PG et al. Examining model

qualities and their impact on digital twins. In Blas MJ and
Alvarez G (eds.) Annual Modeling and Simulation Conference,
ANNSIM 2023, Hamilton, ON, Canada, May 23-26, 2023.
IEEE, pp. 220–232. URL https://ieeexplore.ieee.

org/document/10155350.
63. Tsang EW. Generalizing from research findings: The merits

of case studies. International Journal of Management Reviews
2014; 16(4): 369–383. DOI:10.1111/ijmr.12024.

64. Wieringa R and Daneva M. Six strategies for generalizing
software engineering theories. Science of Computer
Programming 2015; 101: 136–152. DOI:10.1016/j.scico.2014.
11.013. URL http://dx.doi.org/10.1016/j.scico.

2014.11.013.
65. Foldager FF, Thule C, Balling O et al. Towards a Digital

Twin - Modelling an Agricultural Vehicle. In Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 12479 LNCS. ISBN 9783030837228, pp. 109–123.
DOI:10.1007/978-3-030-83723-5_8.

66. Paredis R, Gomes C and Vangheluwe H. A family of digital t
workflows and architectures: Exploring two cases. In Smirnov
A, Panetto H and Madani K (eds.) Innovative Intelligent
Industrial Production and Logistics. Springer. ISBN 978-3-
031-37228-5, pp. 93–109.

67. Quigley M, Gerkey B, Conley K et al. ROS: an open-source
Robot Operating System. In ICRA workshop on open source
software, volume 3. pp. 1–6.

68. Frasheri M, Lumer-Klabbers G, Kvistgaard JL et al. Building
safer robots: From simulation to hardware deployment. In
2023 27th International Conference on Methods and Models
in Automation and Robotics (MMAR). IEEE, pp. 63–68.

69. Ejersbo H, Lausdahl K, Frasheri M et al. Dynamic runtime
integration of new models in digital twins. In 2023 IEEE/ACM
18th Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE, pp. 44–55.

70. Foldager F, Balling O, Boel M et al. Design space exploration
in the development of agricultural robots. In Book of Abstracts
of the European Conference on Agricultural Engineering:
AgEng2018. Wageningen University, pp. 60–61.

71. Schou C, Andersen RS, Chrysostomou D et al. Skill-
based instruction of collaborative robots in industrial settings.
Robotics and Computer-Integrated Manufacturing 2018;
53(June 2016): 72–80. DOI:10.1016/j.rcim.2018.03.008.

72. Cavalcanti A, Barnett W, Baxter J et al. Robostar technology:
A roboticist’s toolbox for combined proof, simulation, and

Prepared using sagej.cls

http://arxiv.org/abs/2102.10390
http://arxiv.org/abs/2102.10390
2102.10390
http://dx.doi.org/10.1007/978-981-99-0252-1{_}2
http://dx.doi.org/10.1007/978-981-99-0252-1{_}2
https://doi.org/10.1080/0951192X.2021.1946857
https://doi.org/10.1080/0951192X.2021.1946857
https://doi.org/10.1109/MODELS58315.2023.00014
https://doi.org/10.1109/MODELS58315.2023.00014
https://doi.org/10.1080/0951192X.2022.2027014
https://doi.org/10.1080/0951192X.2022.2027014
https://ceur-ws.org/Vol-2941/paper17.pdf
https://ceur-ws.org/Vol-2941/paper17.pdf
https://doi.org/10.1016/j.jmsy.2020.06.017
https://doi.org/10.1016/j.jmsy.2020.06.017
https://ieeexplore.ieee.org/document/10155350
https://ieeexplore.ieee.org/document/10155350
http://dx.doi.org/10.1016/j.scico.2014.11.013
http://dx.doi.org/10.1016/j.scico.2014.11.013

24 Journal Title XX(X)

testing. In Software Engineering for Robotics. Springer.
ISBN 9783030664947, 2021. pp. 249–293. DOI:10.1007/
978-3-030-66494-7_9.

Santiago Gil is a PhD candidate in the Department of
Electrical and Computer Engineering at Aarhus University,
Denmark. He completed his Bachelor’s and Master’s
degrees in Colombia and moved to Denmark to pursue his
PhD studies. His research interests include digital twins,
cyber-physical systems, Internet of Things, and digital
transformation.

Bentley James Oakes is an Assistant Professor in
the Department of Computer Engineering and Software
Engineering at Polytechnique Montréal, Canada. His
research interests include digital twins, verification of cyber-
physical systems, model-driven engineering, knowledge
representation, and model transformations. Please visit
https://bentleyjoakes.github.io/ for more information.

Cláudio Gomes is an Assistant Professor at the Department
of Electrical and Computer Engineering at Aarhus Univer-
sity, Denmark. His research interests include co-simulation
and digital twin engineering. His email address is claudio.

gomes@ece.au.dk.

Mirgita Frasheri conducted her PhD studies at Mälardalen
University, Sweden, on the topic of adaptive autonomy.
After her PhD, Mirgita continued as a Postdoc at Aarhus
University, Denmark, where she is currently an Assistant
Professor, and conducts research on Digital Twins, with
robotics as the main application. Her research interests
include multi-agent systems, autonomous systems, AI ethics,
digital twins, and co-simulation.

Peter Gorm Larsen is a professor and deputy-head of
section at the Department for Electrical and Computer
Engineering at Aarhus University. He currently leads the
AU DIGIT Centre, the AU Centre for Digital Twins, as
well as the research group for Cyber-Physical Systems.
His research areas range from formal methods over cyber-
physical systems to digital twins.

Prepared using sagej.cls

https://bentleyjoakes.github.io/
claudio.gomes@ece.au.dk
claudio.gomes@ece.au.dk

	1 Introduction
	2 Background and Related Work
	Background
	Related Work
	Contrast to Previous Works

	3 A Unified Reporting Framework
	Rationale
	Methodology
	Merged DT Reporting Characteristics

	4 Flex-cell Case Study
	Flex-cell DT Overview
	Description with the Proposed Description Framework
	MC1: System-under-Study
	MC2: Physical acting components
	MC3: Physical sensing components
	MC4: Physical-to-Virtual Interaction
	MC5: Virtual-to-Physical Interaction
	MC6: Digital Twin Services
	MC7: Twinning Time-scale
	MC8: Multiplicities
	MC9: Life-cycle stages
	MC10: Digital Twin Models and Data
	MC11: Tooling and Enablers
	MC12: Digital Twin Constellation
	MC13: Twinning Process and Digital Twin Evolution
	MC14: Fidelity and Validity Considerations
	MC15: Digital Twin Technical Connection
	MC16: Digital Twin Hosting/Deployment
	MC17: Insights and Decision Making
	MC18: Horizontal Integration
	MC19: Data Ownership and Privacy
	MC20: Standardization
	MC21: Security and Safety Considerations

	5 Towards the Generalizability of the Reporting Framework
	6 Discussion
	Discussion on Gaps Found
	Challenges and Lessons Learned: Case Study
	Challenges and Lessons Learned: Reporting
	Limitations of This Study
	Case Study
	Reporting

	7 Concluding Remarks

