
SoSyM manuscript No.
(will be inserted by the editor)

A Technique for Symbolically Verifying Properties of Graph-Based Model
Transformations

Levi LÚCIO1, Bentley James OAKES1, and Hans VANGHELUWE21

1 School of Computer Science, McGill University, Canada
2 University of Antwerp, Belgium

The date of receipt and acceptance will be inserted by the editor

Abstract As model transformations are a required part of
model-driven development, it is crucial to provide techniques
that address their formal verification. One approach that has
proven very successful in program verification is symbolic ex-

ecution. The symbolic abstraction in these techniques allows
formal properties to be exhaustively proved for all executions
of a given program. In our approach we apply the same ab-
straction principle to verify model transformations. Our algo-
rithm builds a finite set of path conditions which represents
all concrete transformation executions through a formal ab-
straction relation. We are then able to prove properties over
all transformation executions in a model-independent way.
This is done by examining if any created path condition vi-
olates a given property, which will produce a counterexam-
ple if the property does not hold for the transformation. We
demonstrate that this property proving approach is both valid
and complete. Implementation results are also presented here
which suggest that our approach is feasible and can scale to
real-world transformations.

Key words Model Transformations, Symbolic Verification,
Translation

1 INTRODUCTION

Model transformations were described as the heart and soul

of model driven software development (MDD) by Sendall
and Kozaczynski in 2003 [1]. Due to their practicality and
appropriate level of abstraction, model transformations are
the current technique for performing computations on mod-
els. In their well-known 2006 paper ‘A Taxonomy of Model

Transformations’, the authors Mens, Czarnecki and Van Gorp
call for the development of verification, validation and testing
techniques for model transformations [2]. Despite the many
publications on this topic since then, the field of analysis of
model transformations seems to be still in its (late) infancy,
as evidenced by Amrani, Lúcio et al. [3].

In this paper, we present our work on verification of prop-
erties on model transformations. Specifically, we discuss con-
crete algorithms that can prove whether properties will hold
or do not hold on all executions of a transformation written in
the DSLTrans transformation language. Properties are proved
through a process that constructs a set of path conditions,
where each path condition symbolically represents an infi-
nite number of concrete transformation executions through
an abstraction relation.

In our previous work [4], this property-proving algorithm
was presented as a proof-of-concept. In the present work, we
significantly expand that proof-of-concept by clarifying and
offering discussions on validity and completeness for the pre-
sented algorithms. We also provide an implementation that
we believe will scale to industrial applications, as validated
by an automotive case study [5].

Our approach is feasible due to the use of the transforma-
tion language DSLTrans [6]. DSLTrans is Turing incomplete,
as it avoids constructs which imply unbounded recursion or
non-determinism. Despite this expressiveness reduction, we
have shown via several examples [7–9] that DSLTrans is suf-
ficiently expressive to tackle typical translation problems. This
sacrifice of Turing-completeness allows us to construct a
provably-finite set of path conditions [4]. Our approach cur-
rently considers a core subset of the DSLTrans language that
does not include negative conditions in rules or attribute ma-

2 Levi LÚCIO et al.

nipulation. These features of the language will be addressed
in future work.

Informed by the structure of DSLTrans transformations,
our approach defines an algorithm for the creation of path
conditions. Each path condition that is created represents a set
of concrete transformation executions through an abstraction

relation that we formally define. Once the set of all path con-
ditions has been created for the transformation, we can then
prove structural model syntax relations [3] using this relation.
Such properties are essentially pre-condition/post-condition
axioms involving statements about whether certain elements
of the input model have been correctly transformed into ele-
ments of the output model, and have been explored by sev-
eral authors [10–13]. In our proof technique, the properties
examined can be proven to hold for all executions of a given
model transformation, no matter the input model. Therefore,
our technique is transformation dependent and input inde-

pendent [3].
Our methods differ from previous work in the transforma-

tion verification field in that we require no intermediate rep-
resentation for a specific proving framework (as in [14–16])
but instead work on DSLTrans transformations themselves.
Along with DSLTrans rules, all of the constructs involved in
our algorithms are typed graphs. This intuitive representation
allows our property proving technique to be composed of rel-
atively simple steps, as the metamodels, models, and prop-
erties involved are all constructed using a similar graphical
representation.

A large difficulty in any exhaustive proof technique is
the tendency for the state space to explode, even when ab-
stractions are performed to render the search space finite. A
later section of this work will discuss optimisation opportuni-
ties and performance results obtained from our implementa-
tion. The scalability of our approach will also be analysed in
order to infer the algorithm’s potential applicability to real-
world problems. A real-world industrial case study will also
be briefly presented.

Our specific contributions include:

– An algorithm for constructing all path conditions for a
given DSLTrans transformation;

– An algorithm that proves transformation properties over
these path conditions;

– Validity and completeness proofs of the path condition
construction and property proving algorithms;

– A discussion of performance and scalability results for
our implementation.

This paper is organised as follows: Section 2 briefly in-
troduces the DSLTrans model transformation language and
its formal semantics, while the formal background for this
work is presented in Section 3. The algorithms to build the
complete set of path conditions for the transformation will be
discussed in Section 4. Section 5 will present the abstraction
relation found in our technique, along with examples, while
Section 6 will examine how this abstraction relation is used
in our process for proving properties. In Section 7 and Sec-
tion 8, we introduce our implementation with sample scala-
bility results; Section 9 presents the related work; and finally
in Section 10 we conclude with remarks and future work.

2 The DSLTrans Transformation Language

In this section we will introduce the DSLTrans transforma-
tion language and its constructs from [6]. A formal treatment
of the syntax and semantics of DSLTrans is found in Ap-
pendix B.

A DSLTrans transformation has a source and a target meta-
model, which are seen in Figure 1. This Police Station trans-
formation will be presented throughout the rest of this paper
as an example transformation. The metamodel in Figure 1a
represents a language for describing the chain of command
in a police station, which includes the male (Male class) and
female officers (Female class). The metamodel in Figure 1b
represents a language for describing a different view over the
chain of command, where the officers working at the police
station are classified by gender.

In Figure 2 we present a DSLTrans transformation that in-
volves both metamodels. A description of relevant constructs
as well as visual notation remarks are found in Section 2.2.
Note that the transformation is formed from layers where
each layer is a set of transformation rules. The transforma-
tion will execute layer-by-layer, where transformation rules
in a layer will execute in a non-deterministic order but must
produce a deterministic result, due to the fact that DSLTrans
is confluent by construction [6].

Another important characteristic of DSLTrans transfor-
mations is that they are not Turing-complete. As discussed
in [6], non-completeness is required to make a transformation
execution always terminate, but yet still allows for appropri-
ate expressiveness.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 3

(a) Organization language (b) Gender language

Fig. 1: Metamodels for the Police Station transformation

Fig. 2: The Police Station model transformation expressed in DSLTrans

Besides the fact that DSLTrans’ transformations are free
of constructs that imply unbounded recursion or
non-determinism, DSLTrans’ transformations are strictly out-
place, meaning no changes are allowed to the input model.
However, the output metamodel for a DSLTrans transforma-
tion can be the same as the input metamodel. Also, elements
cannot be removed from the output metamodel as the result of
applying a DSLTrans rule. This restriction is consistent with
the usage of model transformations as translations [17], as no
deletion of output elements is strictly required.

The purpose of this Police Station transformation is to
flatten a chain of command given in the Organization lan-

guage into two independent sets of male and female offi-
cers represented in the Gender language. The command re-

lations will be kept during this transformation, i.e. a female
officer will have a direct association to all her female subor-
dinates and likewise for male officers. Note that differences
in the gender classification metamodel means some relations
present in the input model will not be retained in the output
model.

An example of this transformation’s execution can be ob-
served in Figure 3, where the input model is on the left and
the output model is on the right. Notice that the elements s,
mk and fk in Figure 1a are instances of the source Organiza-

tion metamodel elements Station, Male and Female respec-
tively. The primed elements in Figure 1b are their counterpart
instances in the target Gender metamodel.

4 Levi LÚCIO et al.

s

m1 m2

m3

f1

f2 f3 f4

agent

supervisessupervises

supervises

supervises

supervises supervises

(a) Original model

s'

m1'

m2'

m3'

f1'

f2'

f3'

f4'

m
ale

female

m
al
e

m
al
e

fem
ale

fem
ale

fem
ale

supervisesMale
supervisesFemale

supervisesFemale

supervisesFemale

(b) Transformed model

Fig. 3: Model before and after transformation

Each individual transformation rule in the transformation
is composed of two graphs. The first graph is denoted as
the match graph, and is a pattern holding elements from the
source metamodel. Likewise, the apply graph is a pattern
containing elements from the target metamodel. A formal
definition of a transformation rule is found in Definition 13
in Section 3.

As an example, consider the transformation rule marked
Stations in the first rule layer in Figure 2. The match graph
holds one Station element from the source metamodel, while
the apply graph holds one Station element from the target
metamodel. This means that for all elements in the input model
which are of type Station in the Organization Language, a el-
ement of type Station in the Gender Language will be created
in the output model.

Note that in our approach, we require that the match graph
of a rule is not a subset of the match graph of any other rule
(as formally stated in Definition 16 of model transformation,
in Section 3 of this paper). This requirement is to prevent the
case where a rule could not execute independently of another
rule, except for the cases when such dependency is explicitly
defined by backward links. This is undesirable for the algo-
rithm as presented here as we will explain later. However, as
seen in [18], the expressiveness of the transformations our
algorithm can examine is not restricted. In that work, we de-
tail an operational rule processing step to handle overlapping
rules.

2.1 Properties to Prove

The properties we aim to prove on the Police Station trans-
formation are structural properties. These properties are com-
posed of a pre-condition and a post-condition component, as
seen in Figure 4.

Informally, a property can be read as ‘if the pre-condition
graph matches on the input model to the transformation, then
the post-condition graph will match any output model pro-
duced’. Further details as well as formal validity and com-
pleteness of the property proving process are discussed in
Section 6.

As a brief example of property syntax and semantics, con-
sider the property in Figure 4a. The pre-condition graph is
composed of a Station element connected to a Female ele-
ment and a Male element, where all elements are from the
Organization language metamodel. This structure is repeated
in the post-condition graph, with the difference that the meta-
model for these elements is the Gender language. Thus, this
property represents the statement “a model which includes a

police station that has both male and female officers will be

transformed into a model where the male officer will exist in

the male set and the female officer will exist in the female set”.
We expect this property to always hold in our transformation.

In contrast, we do not expect the property in Figure 4b
to always hold. This property represents the statement “any

model which includes a female officer will be transformed

into a model where that female officer will always supervise

another female officer”. It is not difficult to construct an input

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 5

(a) Property 1 – Expected to hold (b) Property 2 – Not expected to hold

Fig. 4: Properties to be proved on the Police Station transformation

model where the pre-condition holds, but the post-condition
does not. This would be an input model that contains only
one female officer, as there will only be one female officer in
the output model.

We shall discuss our property proving technique in Sec-
tion 6. Following this, experiments in Section 8 will present
experimental results from proving these two properties on the
Police Station transformation.

2.2 DSLTrans Constructs

This section will describe all of the DSLTrans constructs in-
volved in our property-proving algorithm. These constructs
are found in the transformation presented in Figure 2. Formal
details for the handled constructs are found in Section 3.2
and Section 3.3, while Section 3.4 briefly introduces the for-
mal semantics of this subset of DSLTrans. The visual syntax
presented here is based on the DSLTrans Eclipse plug-in syn-
tax [8].

– Match Elements: Match elements are variables typed by
elements of the source metamodel which will match over
elements of that type (or subtype) in the input model when
the transformation is executed. Note that match elements
in a rule are searched for injectively in a model. This
means that, for example, if a match graph includes two
elements of type Station, then the rule will only match
over models that include at least two instances of type
Station.
In the DSLTrans notation as seen throughout this paper,
the match elements will be in a white box in the top half

of a rule.

– Direct Match Links: Direct match links are variables
typed by labelled associations of the source metamodel,
which will match over associations of the same type in
the input model. A direct match link is always expressed
between two match elements.

– Indirect Match Links: Indirect match links are similar to
direct match links, but there may exist a path of contain-
ment associations between the matched instances. Our
notion of indirect links captures only acyclic EMF con-
tainment associations.
In Figure 2, indirect match links are represented in all the
transformation rules in the last layer as dashed arrows be-
tween elements in the match graph.

– Backward Links: Backward links connect elements of
the match and the apply patterns of a DSLTrans rule in or-
der to represent dependencies on element creation by pre-
vious layers of the transformation. When used in a rule,
backward links match over traceability links between el-
ements of the transformation’s input and output models.
These traceability links are implicitly created when any
rule is executed during the transformation. Backward links
thus make it possible to refer in a rule to output elements
created by a previous layer.
Backward links are found in Figure 2 in all transformation
rules on the last layer and are depicted as dashed lines.

6 Levi LÚCIO et al.

– Apply Elements and Apply Links: Apply elements and
apply links are similar to match elements and match links,
but are instead typed by elements of the target metamodel.
Apply elements in a given transformation rule that are not
connected to backward links will create elements of the
same type in the transformation’s output. Apply links will
always be created in the transformation’s output. These
output elements and links will be created as many times
as the match graph of the rule is isomorphically found in
the input model.

Consider the transformation rule denoted Station2Male

in the last rule layer of Figure 2. This rule takes Sta-

tion and Male elements of the Gender Language meta-
model, where these elements were created in a previous
layer from Station and Male elements of the Organization

Language metamodel, and connects them using a male

association.

3 Formal Background

In this section we will introduce the formal concepts that will
be used throughout all this paper. We start in Section 3.1 by a
few (typed) graph concepts that will be used as mathematical
building blocks throughout this paper. In particular we will
introduce the notion of typed graph, typed graph union and
subset, and useful relations between typed graphs based on
homomorphisms. Notice that these concepts are well known
from graph theory and are only slightly customized for our
purposes.

Armed with the fundamental notion of typed graph, we
can then introduce other formal concepts in Sections 3.2, 3.3
and 3.4 which describe the artifacts from the modeling and
transformation world that we require for our verification tech-
nique. Naturally, we start by introducing the central notion of
metamodel, allowing the description of the inputs and out-
puts of a model transformation. Other fundamental notions
we will define in this section are model, transformation rule,
transformation and the semantic concept of model transfor-

mation execution. Several auxiliary and intermediate notions
for defining the syntax and semantics of our techniques will
also be introduced here.

Note that this section presents a collection of formal tools
that are used in the subsequent sections of this paper where
the contributions of this paper are presented. It is meant as a
formal reference for the upcoming formal development. This

section can be safely skipped or skimmed by the reader, who
can return to these definitions punctually to understand the
detailed formal underpinning of our approach.

3.1 Typed Graphs

We will start by introducing the notion of typed graph. A
typed graph is the essential object we will use throughout our
mathematical development. Typed graphs will be used to for-
malise all the important graph-like structures we will present
in this paper. A typed graph is a directed multigraph (a graph
allowing multiple edges between two vertices) where vertices
and edges are typed.

Definition 1 Typed Graph

A typed graph is a 6-tuple 〈V,E,(s, t),τ,V T,ET 〉 where: V is

a finite set of vertices; E is a finite set of directed edges con-

necting the vertices V ; (s, t) is a pair of functions s : E → V

and t : E → V that respectively provide the source and tar-

get vertices for each edge in the graph; function τ : V ∪E →
V T ∪ET is a typing function for the elements of V and E,

where V T and ET are disjoint finite sets of vertex and edge

type identifiers and τ(v)∈V T if v∈V and τ(e)∈ET if e∈E.

Edges e∈ E are noted v e−→ v′ if s(e) = v and t(e) = v′, or sim-

ply e if the context is unambiguous. The set of all typed graphs

is called TG.

We now define how two typed graphs are united. A union
of two typed graphs is trivially the set union of all the compo-
nents of those two typed graphs. Note that we do not require
the components of the two graphs to be disjoint, as in the
following joint unions will be used to merge typed graphs.

Definition 2 Typed Graph Union

Let 〈V,E,(s, t),τ,V T,ET 〉,〈V ′,E ′,(s′, t ′),τ′,V T ′,ET ′〉 ∈ TG

be typed graphs, where V T and ET ′ are disjoint sets, as well

as V T ′ and ET . The typed graph union is the function t :
TG×TG→ TG defined as:

〈
V,E,(s, t),τ,V T,ET

〉
t

〈
V ′,E ′,(s′, t ′),τ′,V T ′,ET ′

〉
=〈

V ∪V ′,E ∪E ′,(s∪ s′, t ∪ t ′),τ∪ τ
′,V T ∪V T ′,ET ∪ET ′

〉
For the formal development of our technique, we are in-

terested in relations between typed graphs that are structure-
preserving, i.e. homomorphisms. Homomorphisms between
typed graphs preserve not only structure, but also the types of
vertices and edges that are mapped.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 7

Definition 3 Typed Graph Homomorphism

Let 〈V,E,st,τ,V T,ET 〉 = g and 〈V ′,E ′,st ′,τ′,V T ′,ET ′〉 =
g′ ∈ TG be typed graphs. A typed graph homomorphism be-

tween g and g′ is a function f : V → V ′ such that for all

v1
e−→ v2 ∈ E we have that f (v1)

e′−→ f (v2)∈ E ′, where τ(v1) =

τ′(f (v1)), τ(v2) = τ′(f (v2)) and also τ(e) = τ(e′). The do-

main of f is noted Dom(f) and the co-domain of f is noted

CoDom(f). When an injective typed graph homomorphism

f exists between g and g′ we write g
f
C g′, or simply g C g′

when the context is unambiguous. When a surjective typed

graph homomorphism f exists between typed graphs g and

g′ we write g
f
J g′, or also simply g J g′ in an unambiguous

context.

Note that, trivially, a typed graph homomorphism is a
graph homomorphism.

We now define the useful notion of typed subgraph. As
expected, a typed subgraph is simply a restriction of a typed
graph to some of its vertices and edges.

Definition 4 Typed Subgraph

Let 〈V,E,st,τ,V T,ET 〉= g,〈V ′,E ′,st,τ′,V T ′,ET ′〉= g′ ∈ TG

be typed graphs. g′ is a typed subgraph of g, written g′ v g,

iff V ′ ⊆V , E ′ ⊆ E and τ′ = τ|V ′∪E ′ .

Two typed graphs are said to be isomorphic if they have
exactly the same shape and related vertices and edges have
the same type.

Definition 5 Typed Graph Isomorphism

Let 〈V,E,st,τ,V T,ET 〉 = g,〈V ′,E ′,st ′,τ′,V T ′,ET ′〉 = g′ ∈
TG be typed graphs. We say that g and g′ are isomorphic,

written g ∼= g′, if and only if there exists a bijective typed

graph homomorphism f : V → V ′ such that f−1 : V ′→ V is

a typed graph homomorphism.

Notation: In order to simplify our notation, when the con-
text is unambiguous we will abbreviate a typed graph 〈V,E,st,
τ,V T,ET 〉 as as 4-tuple 〈V,E,st,τ〉. Also, given a typed graph
g ∈ TG, will use the notation Components(g) to describe the
set of strongly connected typed graphs in g. Finally, we will
use the notation g|t to refer to the restriction of graph g to its
subgraph containing only edges of type t.

3.2 Metamodel and Model-Related Constructs

We will start by introducing the notion of metamodel, which
in DSLTrans is used to type the input and output models of a

DSLTrans transformation. Two metamodels, the organization

language and gender language are depicted in Figure 1.

Definition 6 Metamodel

A metamodel is a 5-tuple 〈V,E,st,τ,≤〉 where 〈V,E,st,τ〉 ∈
TG is a typed graph, (V,≤) is a partial order and τ is a bijec-

tive typing function. Additionally we also have that: if v ∈ V

then τ(v)∈V T ×{abstract,concrete}, where V T is the set of

vertex type names; if e ∈ E then τ(e) ∈ ET ×{containment,

re f erence}, where ET is a set of edge type names. The set of

all metamodels is called META.

A formal metamodel is a particular kind of typed graph
where vertices represent classes and edges represent relations
between those classes. A typed graph representing a meta-
model has two special characteristics: on the one hand, the
typing function for vertices and edges is bijective. This means
that each type occurs only once in the metamodel, as is to be
expected. On the other hand, a metamodel is equipped with
a partial order between vertices. This partial order is used
to model inheritance at the level of the metamodel’s classes.
Note that here we have overridden the co-domain of the typ-
ing function in the original typed graph presented in Defini-
tion 1 in order to allow distinguishing between abstract and
concrete classes, as well as between containment and refer-

ence edges in our metamodels. For simplification purposes,
we do not model association cardinalities in our formal no-
tion of metamodel as cardinalities are not strictly necessary
in our development.

Definition 7 Expanded Metamodel

Let mm= 〈V,E,st,τ,≤〉∈META be a metamodel. The expan-

sion of mm, noted mm?, is a typed graph 〈V ′,E ′,st ′,τ′〉 ∈ TG

built as follows:

– V ′ =V \{v ∈V |τ(v) = (·1,abstract)};
– v1

e−→ v2 ∈ E ′ if v1
e−→ v2 ∈ E and τ(v1) = (·,concrete) and

τ(v2) = (·,concrete);

– if v1
e−→ v2 ∈ E we have that v′1

e′−→ v′2 ∈ E ′, where v′1 ≤ v1,

v′2 ≤ v2 and τ′(e′) = τ(e);

– for all v ∈ V ′ and e ∈ E ′ we have that τ′(v) = τ(v) and

that τ′(e) = τ(e).

An expanded metamodel is an auxiliary construct where
all the relations between types of a metamodel are made ex-
plicit, rather than remaining implicit in the specialization hi-
erarchy. It is built by adding to the original metamodel typed

1 In our mathematical development we use a ‘dot’ notation to rep-
resent that we do not care about the value of a particular variable in
a given context.

8 Levi LÚCIO et al.

graph a relation of type t between two classes of the meta-
model, whenever those classes specialize two classes that are
also related by a relation of type t. Abstract classes and their
relations do not carry over to the expanded metamodel. Ex-
panded metamodels will be used in the subsequent text to fa-
cilitate formal the treatment of any structure involving poly-
morphism.

Definition 8 Metamodel Instance

An instance of a metamodel mm = 〈V ′,E ′,st ′,τ′,≤〉 ∈META

is a typed graph 〈V,E,st,τ〉 ∈ TG, where the co-domain of τ

equals the co-domain of τ′. Also, there is a typed graph homo-

morphism f : V →V ′ from 〈V,E,st,τ〉 to the expanded meta-

model mm? and the graph
〈
V,{e∈E |τ(e)= (·,containment)}

〉
is acyclic. The set of all instances for a metamodel mm is

called INSTANCEmm.

A metamodel instance is a useful intermediate formal no-
tion that lies between metamodel and model. The injective
typed graph homomorphism between a metamodel instance
and metamodel models multiple “instances” of objects and
relations being typed by one single class or relation of the
metamodel. Metamodel instances do not allow cyclic con-
tainment relations, as enforced by EMF.

Definition 9 Containment Transitive Closure

The containment transitive closure of a metamodel instance

〈V ′,E ′,st ′,τ′〉 ∈ INSTANCEmm is a typed graph 〈V,E,st,τ〉
where we have that V = V ′, τ′ ⊇ τ and τ’s co-domain is the

union of the co-domain of τ′ and the set {indirect}. We also

have that E ′ =E∪E∗c where E∗c is the transitive closure of the

set
{

v e−→ v′ |τ(v e−→ v′) = (·,containment)
}

and if e ∈ E \E ′

then τ(e) = indirect. We denote mi∗ the containment closure

of a metamodel instance mi ∈ INSTANCEmm.

Given a metamodel instance, its containment transitive
closure includes, besides the original graph, all the edges be-
longing to the transitive closure of containment links in that
metamodel instance. The transitive edges are typed as indi-

rect. In the definitions that follow we will use the ∗ notation,
as in Definition 9, to denote the containment transitive closure
of structures that directly or indirectly include metamodel in-
stances. For example, tg∗ would represent the containment
transitive closure of typed graph tg wherever containment
edges are found in the graph. Note that the ∗ notation is dif-
ferent from the ? notation, introduced in Definition 7 for an
expanded metamodel.

Definition 10 Model

A model of a metamodel mm = 〈V ′,E ′,st ′,τ′,≤〉 ∈ META is

a metamodel instance 〈V,E,st,τ〉 ∈ INSTANCEmm, such that:

there exists an injective typed graph homomorphism f : V →
V ′ from 〈V,E,st,τ〉 to metamodel mm? where, if there exists

an edge f (a) e′−→ b ∈ E ′ where τ(e′) = (·,containment), then

we also have that f (b) e−→ c ∈ E and that f (c) = b. The set of

all models for a metamodel mm is called MODELmm.

A model, as per Definition 10, is a metamodel instance
where all the containment relations are respected. This means
that if an object having a containment relation exists in the
model, then the model will also contain an instance of that
containment relation together with a contained object. Two
models can be observed in Figure 3, which are respectively
instances of the Organization language and Gender language

found in Figure 1.
Note that the containment constraint does not necessarily lead
to infinite models in the case of containment relations with
the same source and target classes. In fact, if the cardinality
of the target class is allowed to be zero, then it is not neces-
sary that the containment relation is instantiated. For exam-
ple, this is the case for the containment relation supervise in
the metamodel of Figure 1a.

Definition 11 Input-Output Model

An input-output model is a 6-tuple
〈
V,E,(s, t),τ, Input,

Out put
〉
, where: Input = 〈V ′,E ′,st ′,τ′〉 ∈ INSTANCEsr is a

model; Out put = 〈V ′′,E ′′,st ′′,τ′′〉 ∈ INSTANCEtg is a meta-

model instance; Input and Out put are disjoint. Additionally

we have that V =V ′∪V ′′, E ⊆ E ′∪E ′′ and τ⊆ τ′∪τ′′, where

the co-domain of τ is the union of the co-domains of τ′ and

τ′′ and the set {trace}. An edge e ∈ E \E ′ ∪E ′′ is called a

traceability link and is such that s(e) ∈ V ′′, t(e) ∈ V ′ and

τ(e) = trace. The set of all match-apply patterns for a source

metamodel sr and a target metamodel tg is called IOMsr
tg.

An input-output model is an object we will use when
defining the semantics of a DSLTrans model transformation
in Section 3.2. It is composed of two metamodel instances,
one called the input and the other one the output. An input-
output model allows the representation of intermediate oper-
ational states during the execution of a model transformation.
It may include a particular type of edges called traceability

links, for keeping a history of which elements in the output
model originated from which elements in the input model.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 9

Definition 12 Metamodel Pattern and Indirect Metamodel Pat-

tern

A pattern of a metamodel mm ∈META is an instance of mm.

Given a metamodel pattern 〈V ′,E ′,st ′,τ′〉 ∈ INSTANCEmm we

have that 〈V,E,st,τ〉 is an indirect pattern if V =V ′, E ′ ⊇ E

and the co-domain of τ is the union of the co-domains of τ′

and the set {indirect}. Also, if e ∈ E \E ′, then we have that

τ(e) = indirect. Given a metamodel mm, the set of all meta-

model patterns for mm is called PATTERNmm. The set of all

indirect metamodel patterns for mm is called IPATTERNmm.

Metamodel patterns are introduced in Definition 12 as an
intermediate notion, formally equal to metamodel instances.
An indirect metamodel pattern is a metamodel pattern that in-
cludes edges typed as indirect. Both structures will be used as
building blocks in the construction of transformation-related
structures in the upcoming text.

3.3 Syntactic Transformation Constructs

This section will detail the abstract syntax of the constructs
involved in a DSLTrans transformation.

Definition 13 Transformation Rule

A transformation rule is a 6-tuple
〈
V,E,(s, t),τ,Match,

Apply
〉
, where: Match = 〈V ′,E ′,st ′,τ′〉 ∈ IPATTERNsr such

that: Match 6= ε2 is an non-empty indirect metamodel pat-

tern; Apply= 〈V ′′,E ′′,st ′′,τ′′〉 ∈ PATTERNtg such that Apply 6=
ε is a metamodel pattern; Match and Apply are disjoint. We

also have that V = V ′ ∪V ′′, E ⊆ E ′ ∪ E ′′ and τ ⊆ τ′ ∪ τ′′,

where the co-domain of τ is the union of the co-domains of τ′

and τ′′ and the set {trace}. An edge e ∈ E \E ′∪E ′′ is called

a backward link and is such that s(e) ∈ V ′′, t(e) ∈ V ′ and

τ(e) = trace. We additionally impose that there always exists

a v1 ∈ V ′′ in the Apply part of the rule such that @e .v1
e−→ v2

and τ(e) = trace, or that E ′′ is not empty. The set of all trans-

formation rules for a source metamodel sr and a target meta-

model tg is called RULEsr
tg.

A transformation rule is the elemental block of a model
transformation. Several transformation rules can be observed
in the Police Station transformation in Figure 2. A formal
transformation rule includes a non-empty match pattern and
a non-empty apply pattern (also known in the model trans-
formation literature as a rule’s left hand side and right hand

2 We use the simplified ε notation to denote empty n-tuples struc-
tures.

side). The apply pattern of a rule always contains at least one
apply element that is not connected to a backward link or
an edge, meaning in practice that a rule will always produce
something and not only match. A match pattern can include
indirect links that are used to transitively match containment
relations in a model. An apply pattern does not include indi-
rect links as it is used only for the construction of parts of in-
stances of a metamodel. A transformation rule includes back-
ward links, as informally introduced in Section 2.2. Back-
ward links are formally typed as trace.

Definition 14 Matcher of a Transformation Rule

Let rl =
〈
V,E,st,τ,Match,Apply

〉
be a transformation rule

where Match= 〈Vm,Em,stm,τm〉. We define rl’s matcher, noted

‖rl‖, as the transformation rule
〈
V ′,E ′,st ′,τ′,Match,

Apply′
〉
v rl where v1

e−→ v2 ∈ E ′ if and only if v1,v2 ∈Match

or τ(e) = trace and V ′ = Vm ∪
{

v1 |v1
e−→ v2 ∈ E ∧ τ(e) =

trace
}

.

Definition 14 introduces the notion of matcher for a trans-
formation rule which consists solely of the match pattern of a
rule and its backward links, if any. The matcher of a rule con-
stitutes the complete pattern that a DSLTrans rule attempts
to match over a input-output model during rule execution.
Traceability links between input and output model elements
generated during transformation execution are matched by
transformation rules’ backward links, as informally explained
in Section 2.2.

Definition 15 Expanded Transformation Rule

Let rl =
〈
V,E,st,τ,Match,Apply〉 ∈ RULEsr

tg be a transfor-

mation rule where Match = 〈V ′,E ′,st ′,τ′〉 and also we have

that sr = 〈V ′′,E ′′,st ′′,τ′′,≤〉. The expansion of rl, noted rl? is

a set of transformation rules built as follows:

– rl ∈ rl?;

–
〈
V,E,st,τ′,Match,Apply〉 ∈ rl? iff for all v ∈V ′ we have

that τ′(v)≤ τ(v).

The expansion of a transformation rule is a set of transforma-
tion rules. Each rule in that set includes a possible replace-
ment of each of the classes in the match part of the original
rule by one of its subtypes. Expanded transformation rules
will be important such that polymorphism is correctly han-
dled in the developments that follow.

Definition 16 Layer, Model Transformation

A layer is a finite set of transformation rules l ⊆ RULEsr
tg.

10 Levi LÚCIO et al.

The set of all layers for a source metamodel sr and a tar-

get metamodel tg is called LAYERsr
tg. A model transforma-

tion is a finite list of layers denoted [l1 :: l2 :: . . . :: ln] where

lk ∈ LAYERsr
tg and 1 ≤ k ≤ n, n ∈ N. We also impose that

for any pair of rules rl1,rl2 ∈
⋃

1≤k≤n lk, if ‖rl1‖ ∼= rl and

rl v ‖rl2‖ then rl2 appears in a layer later than rl1 and the

apply parts of rl1 and rl2 are not isomorphic. The set of all

transformations for a source metamodel s and a target meta-

model t is called TRANSFsr
tr .

Definition 16 formalises the abstract syntax of a model
transformation, introduced in Section 2. An example of a model
transformation can be observed in Figure 2, the Police Station
transformation. As expected, a formal DSLTrans transforma-
tion is composed of a sequence of layers where each layer
is composed of a set of rules. The last condition of Defini-
tion 16 imposes that, for any two pair of rules in the trans-
formation, the matcher of the second rule never partially or
totally subsumes (or contains) the matcher of the first rule,
unless the second rule is in a subsequent layer and produces
something more than the first rule. This condition avoids sit-
uations where the execution of a rule in a DSLTrans model
transformation necessarily implies the execution of another
rule (except for when rules having backward links necessar-
ily execute because all their dependencies were created dur-
ing the execution of previous layers).

Notation: We naturally extend to transformation rules (Def-
inition 13) and transformation executions (Definition 17) the
typed graph operations introduced in Section 3. Also, given a
structure such as transformation rule rl = 〈V,E,st,τ,Match,

Apply〉, we will refer to the structure’s components by using
the component’s name followed by the variable that holds the
structure in between parenthesis. For example, we will write
V (rl) to designate the V component of rl or Apply(rl) to des-
ignate rl’s Apply component.

3.4 Semantic Transformation Constructs

In the definition that follows we introduce the notion of exe-
cution of a DSLTrans model transformation. For our purposes
it is sufficient to introduce it as an input-output model (see
Definition 11), containing the input model for the transfor-
mation, the produced output, and the traceability links built
during execution. Due to space limitations, we cannot intro-
duce the semantics of DSLTrans in the main text of this paper.

We thus refer the reader to Section 3.2 for a formal descrip-
tion on how DSLTrans transformation executions are built.

Definition 17 Model Transformation Execution

Let tr∈ TRANSFsr
tg be a transformation and input ∈MODELsr

be a model. Assume we also have that:

〈V,E,st,τ, input,ε〉, tr trstep−−−→ 〈V ′,E ′,st ′,τ′, input,out put〉

A model transformation execution is the input-output model

〈V ′,E ′,st ′,τ′, input,out put〉 ∈ IOMsr
tg, where out put ∈ IOMsr

tg

is an input-output model. The set of all model transformation

executions for transformation tr is written EXEC(tr). A model

transformation with an empty input model is noted εex. Note

that relation trstep is formally defined in Appendix B.

Finally, as stated in Definition 17, we consider a model
transformation execution to be the input-output model (IOM)
resulting from executing a set of rules on a starting IOM. This
starting IOM includes the transformation’s input in its input
part and has an empty output part. The starting IOM repre-
sents the first step of the transformation when no rule has
been executed yet. A transformation execution results from
executing all the rules in a DSLTrans model transformation.

4 Building Path Conditions

This section will present how path conditions are structured
to represent symbolic rule execution. As well, we present our
approach to building a set of path conditions to represent all
executions of a DSLTrans transformation.

4.1 Symbolic Execution

Our algorithm operates on the principle of symbolic execu-
tion to build up these path conditions. In order to explain
the concept of symbolic execution of a transformation, let us
make an analogy with program symbolic execution as intro-
duced by King in his seminal work “Symbolic Execution and

Program Testing” [19]. According to King, a symbolic exe-
cution of a program is a set of constraints on that program’s
input variables called path conditions. Each path condition

describes a traversal of the conditional branching commands
of that program. A path condition is symbolic in the sense it
abstracts as many concrete executions as there are instanti-
ations of the path condition’s variables that render the path
condition’s constraints true.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 11

We can transpose this notion of symbolic execution to
model transformations. The analog of an input variable in
the model transformation context are metamodel classes, re-

lations and attributes. As program statements impose con-
straints on input and output variables during symbolic execu-
tion, transformation rules impose conditions on which meta-
model elements are instantiated during a concrete transforma-
tion execution, and how that instantiation happens. As well,
rules in a model transformation are implicitly or explicitly
scheduled. These control and/or data dependencies must be
taken into consideration during path condition construction.

As in program symbolic execution, each path condition in
our approach abstracts as many concrete executions as there
are input/output models that satisfy them. This is formulated
as an abstraction relation as further explained in Section 5.

In what follows we will examine in more detail how these
symbolic execution principles can apply to the verification of
model transformations.

4.2 Path Conditions

In order to present the intuition of path conditions and sym-
bolic executions, we first discuss the idea of rule combina-

tions.
As seen in Section 2, a layer in a DSLTrans transforma-

tion contains a number of rules. We can create a set of rule
combinations for this layer by taking the powerset of all rules
in that layer. Each rule combination in this set will represent
all possible transformation executions where the rules in that
combination would execute.

For example, in Figure 5, the rule combination marked
‘AC’ represents the set of transformation executions where
the rules A and C would execute and no others. Another rule
combination marked ‘A’ represents the transformation execu-
tions where only rule A would execute.

Fig. 5: Rule combinations created for a transformation layer

Note that within these rule combinations, the number of
times a rule has executed is abstracted. Either a rule has ex-
ecuted zero times, and the rule is not represented in a rule

combination, or the rule has executed some finite number of
times and it is represented. This abstraction is key to our ap-
proach, as it allows us to create a finite set of path conditions
to abstract over an infinite set of transformation executions,
as seen in Section 5.

We also note that rule combinations are created, and not
rule permutations. This follows from the semantics of
DSLTrans as described in Section 2, as transformation rules
in a layer will execute in a non-deterministic order but pro-
duce a deterministic result, by construction of the semantics
of DSLTrans. As a final note, the transformation executions
that these rule combinations represent always terminate, also
by construction of the semantics of DSLTrans [6].

We base our concept of path conditions on these rule com-
binations. However, as DSLTrans allows for dependencies
between rules, we cannot create path conditions for the trans-
formation by taking the powerset of all rules. Instead, our
approach must move layer-by-layer and resolve the depen-
dencies between rules. The next two sections will introduce
the concepts of traceability and dependency, before we briefly
discuss the syntax and semantics of path conditions them-
selves.

4.2.1 Traceability DSLTrans rules allow for dependencies
to be specified on which elements of the output model were
created from specific elements of the input model. To resolve
these dependencies, traceability information for the transfor-
mation is created during the execution of a DSLTrans model
transformation [6]. In our verification approach, we store this
same information as symbolic traceability links, in order to
record which elements belong to the same DSLTrans rule.

At a particular point in the path condition construction
process, symbolic traceability links are built for each rule as
follows: for all match and apply elements of a rule, given a
match element belonging to the match graph of a rule and
an apply element belonging to the apply graph of the same
rule, a symbolic traceability link is built between the two if
the apply element is not connected to a backward link (as
explained below). This is intuitive: traceability links are built
between a newly generated element in the output model, and
the elements of the input model that originated it.

An example of the symbolic traceability link creation pro-
cess is shown in Figure 6. Note that symbolic traceability
links are a solid line between match and apply elements in
our visual notation.

12 Levi LÚCIO et al.

(a) Before symbolic traceability
links added

(b) After symbolic traceability
links added

Fig. 6: Symbolic traceability links created for an abstract
DSLTrans rule

4.2.2 Backward Links The dependencies in a DSLTrans rule
are specified using the backward link construct, as further
detailed in Section 2.2 and Definition 13. Section 4.4.2 will
discuss how these dependencies are then resolved during our
symbolic execution approach.

Figure 7a demonstrates how backward links are used
within a rule. The rule shown contains a backward link, which
defines the dependency that an element of type X was created
from an element of type A, and an element of type Y was
created from an element of type B. If this dependency is sat-
isfied, then another element of type Z should be created. This
element should be associated with the Y element.

(a) Rule with backward links
(dashed lines)

(b) Traceability links added

Fig. 7: Adding traceability links to an abstract DSLTrans rule
with backward links

Figure 7b shows the rule after symbolic traceability links
have been added. Two symbolic traceability links are created
from the Z element to the A and B elements in the match
graph to store traceability information. Note that no symbolic
traceability links are built between two elements connected
by backward links, as these links have already been built in a
previous layer.

4.2.3 Syntax and Semantics A path condition represents the
symbolic execution of a set of DSLTrans rules, similar to a
rule combination as explained above. Again, we use an ab-
straction over the number of times a rule has symbolically
executed. Each path condition will represent that a rule has
not executed, or has executed one or more times.

The path condition generation algorithm will symboli-
cally combine transformation rules into a path condition. Each
path condition will then abstract a set of concrete transfor-
mation executions, as defined by our abstraction relation in
Section 5.

As seen in the rest of this section, the structure of path
conditions is similar to that of DSLTrans rules. The match
graph of a path condition represents a pattern that must be
present in the input model of the transformation, while the
apply graph is a pattern which will be instantiated in the out-
put model of the transformation. Symbolic traceability links
are also kept between elements in the match and apply graphs
to retain traceability information.

The formal definition of a path condition is presented in
Definition 18.

Definition 18 Path Condition

A path condition is a 7-tuple
〈
V,E,(s, t),τ,Match,Apply,

Rulecop
〉
, where: Match = 〈V ′,E ′,st ′,τ′〉 ∈ IPATTERNsr is

an indirect pattern; Apply = 〈V ′′,E ′′,st ′′,τ′′〉 ∈ PATTERNtg

is a pattern; Match and Apply are disjoint graphs. We also

have that V =V ′∪V ′′, E ⊆ E ′∪E ′′ and τ⊆ τ′∪τ′′ where the

co-domain of τ is the union of the co-domains of τ′ and τ′′

and the set {trace}. An edge e ∈ E \E ′ ∪E ′′, called a sym-
bolic traceability link, is such that s(e) ∈ V ′′ and t(e) ∈ V ′

and τ(e) = trace. Finally, the Rulecop component in the 7-

tuple contains the set of rule copies used in the construc-

tion of the path condition, where each rule copy is a sub-

graph of
〈
V,E,(s, t),τ

〉
. The set of all path conditions for

a source metamodel sr and a target metamodel tg is called

PATHCONDsr
tg and the empty path condition is noted εpc.

Similarly to a transformation rule (see Definition 13), a
path condition is also a typed graph with a match and an ap-
ply part. As mentioned before, a path condition contains a
combination of rules where symbolic traceability links rep-
resent the concrete traceability links of a transformation exe-
cution (see Definition 17). The path condition structure also
contains a Rulcop set that allows identifying individually all
the copies of rules that were used when building the path con-
dition’s typed graph. Note that we refer to copies of rules as,

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 13

despite the fact that a path condition normally only contains
one copy of each rule, in certain situations a rule may be used
multiple times in the construction of a path condition. This
will be explained further ahead in this section.

Notation: Given a path condition pc =
〈
V,E,st,τ,

Match,Apply,Rulecop
〉
∈ PATHCONDsr

tg we refer to the set of
transformation rules in pc identified by the Rulecop relation
as Rulecop(pc). Also, because a path condition is a particular
kind of a typed graph, we naturally extend the basic notation
of operators and homomorphisms on typed graphs defined in
Section 3 to path conditions.

4.3 Path Condition Generation Algorithm

This section will describe how path conditions are constructed
for a DSLTrans transformation using our approach.

Figure 8a outlines the path condition generation algorithm.
The algorithm will examine each transformation layer in turn.
Path conditions from the previous layer will be combined
with rules from the current layer to create a new set of path
conditions. This new set of path conditions will then be com-
bined with the rules from the next layer to produce yet an-
other set of path conditions, and so on. At the end of the
algorithm, a complete set of path conditions for the entire
transformation will have been produced.

We now define what is occurring in the ‘combination step’
in Figure 8a. This step begins by selecting each path condi-
tion in the working set, one at a time. Note that at the begin-
ning of the path condition creation process, this working set
consists of an empty path condition.

A new set of path conditions will then be created by se-
quentially combining each rule in the layer with the path con-
dition selected. Recall that a path condition represents a set of
rules that have symbolically executed, thereby abstracting a
set of transformation executions through our abstraction rela-
tion. Combining a path condition with a rule will produce one
or more path conditions depending on how the rule combines
with the rules already represented by the path condition. The
pre- and post- conditions defined by the path condition will
be modified according to the elements found in that rule.

Each of the new path conditions created from combining
a rule with a path condition will then be combined with the
next rule in the layer. A small example is shown in Figure 8b,
where a path condition is combined with two rules. Note that
a rule can combine with a path condition in multiple ways

(differentiated by prime marks in the figure). Figure 9 shows
how path conditions from the previous layer are sequentially
combined with all the rules from the current layer. All the
path conditions for the layer are then collected to produce the
final working set of path conditions for the layer.

Fig. 9: Creating all path conditions for a layer

4.4 Combining a Path Condition with a Rule

We will now examine the combination step between one path
condition and one rule, which produces a set of new path con-
ditions. A formal and generic definition of this step will be
presented first, before we explain the specialized combina-
tion possibilities with figures and informal text.

Definition 19 Combination of a Path Condition with a Rule

Let pc = 〈V ′,E ′,st ′,τ′,Match′,Apply′,Rulecop′〉 ∈
PATHCONDsr

tg be a path condition and rl = 〈V ′′,E ′′,st ′′,τ′′,
Match′′,Apply′′〉 ∈ RULEsr

tg be a transformation rule, where

their respective typed graphs can be joint. The union of pc

with rl is built using the operator
trace
t : PATHCONDsr

tg×RULEsr
tg→

PATHCONDsr
tg, as follows:

pc
trace
t rl = 〈V,E,st,τ,Match,Apply,Rulecop〉

where we have that V = V ′∪V ′′, E ′∪E ′′ ⊆ E, st ′∪ st ′′ ⊆ st,

τ′∪τ′′ ⊆ τ and if v1
e−→ v2 ∈ E \E ′∪E ′′ then we have that v1 ∈

Apply(V ′′), v1 /∈ Apply(V ′), v2 ∈ Match(V ′′) and also that

τ′(e) = trace. Additionally, Match = Match′ tMatch′′ and

Apply = Apply′tApply′′. Finally, we have that: Rulecop =

Rulecop′∪ rl.

Definition 19 shows the formal definition of combining
a path condition with a rule. When a path condition is com-
bined with a rule their typed graphs are united. Additionally,
symbolic traceability links will be built at this time between
the newly added apply elements of the rule and all of the

14 Levi LÚCIO et al.

(a) Previous path conditions are combined
with rules

(b) Combining a path condition with two rules

Fig. 8: Two components in the path condition creation process

rule’s match elements. As a reminder, the link creation al-
gorithm and examples have been introduced in Section 4.2.1.
Note that the fact that the graphs are potentially joint allows
us to overlap a rule with the path condition by anchoring the
rule on traceability links shared by the path condition and the
rule graph. In the mathematical development that follows we
will often refer to the joint parts of two or more typed graphs
using the term “glue”.

We will now discuss the combination step possibilities.
Let PC be the path condition selected from layer n-1, and
R the rule selected from layer n. When PC and R are com-
bined, there are four possibilities based on the dependencies
between PC and R:

1. R has no dependencies
2. R has dependencies and cannot execute
3. R has dependencies and may execute
4. R has dependencies and will execute

These dependencies are defined by the backward links
within R. As mentioned in Section 4.2.1, backward links en-
force that the elements in the apply graph were created by
the connected elements in the match graph. In the context of
combining a rule and a path condition, these backward links
define dependencies between the rule and the elements cre-
ated by the rules represented by the path condition.

The below figures will demonstrate the four cases above.
As a reminder of visual notation, the backward links are dashed
lines between the match and apply graphs of the rule and path
condition, while symbolic traceability links are solid lines be-
tween the two graphs.

4.4.1 No Dependencies The rule R has a match graph which
represents its pre-conditions. For a particular transformation
execution, it is possible that this match graph would not match

Fig. 10: R has no dependencies

a specific input model, and thus R would not execute in these
transformation executions. To represent all such transforma-
tion executions where the rule R would not execute, PC is
copied unchanged to the new set of path conditions.

To represent the transformation executions where the match
graph of R would match, and therefore R would execute, a
new path condition is produced which consists of the union
between R and PC. This situation is seen in Figure 10 and
formally defined in Definition 20.

Definition 20 Path Condition and Rule Combination – No

Dependencies

The combination of a path condition pc and a rule rl, when

rl has no dependencies, is described by the relation combine→ ⊆
PATHCONDsr

tg×P (PATHCONDsr
tg)×RULEsr

tg×P (PATHCONDsr
tg),

defined as follows:

rl = 〈V,E,st,τ,Match,Apply
〉
〉 , @e ∈ E .τ′(e) = trace

〈pc,AC,rl〉 combine−−−−→ AC ∪
⋃

pc′∈AC pc′
trace
t rl

Relation combine→ in Definition 20 models the operational
combination step shown in Figure 8b (the vertical black ar-
rows between boxes). The relation has three input arguments:
the first argument is the original path condition from the pre-

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 15

vious layer (shown as the topmost box in Figure 8b with label
PC); the second argument is the set of path conditions accu-
mulated thus far by combining other rules in the current layer
with the original path condition; and the third argument is the
rule from the current layer now being combined. The fourth
argument of the relation, the relation’s output, is the new set
of path conditions resulting from this combination.Briefly,
the equation in Definition 20 states that whenever a rule has
no backward links typed as trace (i.e. no dependencies), all
path conditions in the accumulator set are kept, along with the
result of combining all the path conditions in the accumulator
set with the current rule.

4.4.2 Resolving Dependencies If R contains backward links
and thus R defines dependencies on PC, then we need to anal-
yse whether PC can satisfy those dependencies. This is done
by matching the backward links in R over the symbolic trace-
ability links in PC. Note that symbolic traceability links in R
are not required to be found in PC, and that only backward
links define dependencies.

Unsatisfied Dependencies If the backward links in R can-
not be matched to symbolic traceability links in PC, then in
the transformation executions abstracted by PC, R cannot ex-
ecute. Again, PC will be copied unchanged to the new set of
path conditions, but no new path condition will be created.
This case is shown in Figure 11, where the backward links
between the two B elements in R cannot match over the sym-
bolic traceability link in PC. Definition 21 describes this case
formally.

Fig. 11: R’s dependencies are not satisfied by PC

Definition 21 Path Condition and Rule Combination – Un-

satisfied Dependencies

The combination of a path condition pc and a rule rl, when

rl has dependencies that are not satisfied by pc, is described

by the relation combine→ ⊆ PATHCONDsr
tg×P (PATHCONDsr

tg)

×RULEsr
tg×P (PATHCONDsr

tg), defined as follows:

¬
(
rl|trace J pc|trace

)
〈pc,AC,rl〉 combine−−−−→ AC

According to the pre-conditions of the equation presented
in Definition 21, a path condition does not satisfy the depen-
dencies present in a rule if there is no surjective typed graph
homomorphism between the backward links of the rule and
the symbolic traceability links of the path condition. Besides
expressing the fact that all backward links must exist as sym-
bolic traceability links the path condition, the surjective ho-
momorphism allows modeling the case where dependencies
expressed by two (or more) backward links between similarly
typed elements can be satisfied one single symbolic traceabil-
ity link in the path condition. This is the case, for example, of
rule FemaleToFemale in the Police Station in Figure 2. The
two similarly typed backward links in this rule are satisfied
by a path condition containing only the rule females gener-
ated from the first layer of the transformation, holding one
single symbolic traceability link.

Partially- and Totally- Satisfied Dependencies Consider the
possibility that the backward links of R can be found in PC,
and R’s dependencies are met. The question then becomes
whether the rule R may or will execute in the abstracted trans-
formation executions.

To resolve this question, the match graph of R, along
with R’s backward links, is matched to PC’s match graph and
traceability links. If all of these elements are found, then we
denote this as the ‘totally-satisfied case’, where R will nec-
essarily execute in the abstracted transformation executions.
Otherwise, we denote the ‘partially-satisfied’ case, where R
may execute. Note that we break up these cases for ease of
explanation only. Formally, both cases are encompassed by
Definition 24.

In the totally-satisfied case, R will be “glued” overtop
PC, as seen in Figure 12a. This gluing operation is anchored
where the backwards links in R match over the traceability
links in PC. The purpose of this operation is to include any
elements in R’s apply graph that may not exist in PC. Thus, all
elements and associations which exist in both PC and R are
ignored. Note that if multiple total matches exist in PC, that
R will be glued at multiple points as seen in Figure 12b. This

16 Levi LÚCIO et al.

(a) Totally satisfied at one location

(b) Totally satisfied at multiple locations

Fig. 12: R’s dependencies are totally satisfied by PC

“gluing” operation is also defined formally in Definition 24,
as the addition of a delta graph.

In the partially-satisfied case, rule R may or may not exe-
cute. Note that in Figure 13, PC does not have the association
between the A and B elements in the match graph. This means
that it is possible that the input model for the transformation
does not have this association present. In these transforma-
tion executions R would not execute. Figure 13 shows the
two path conditions produced in this case. The first produced
is a copy of PC, where R does not symbolically execute. The
second is where R symbolically executes at the matched lo-
cation. Therefore, R is glued onto PC, with the gluing step
the same as in the totally-satisfied case above.

Note that this gluing procedure must consider all match-
ing possibilities, for each location the rule might match over
the input model. For example, in Figure 14, rule R has a back-
ward link that can be partially matched on two locations in
PC: the left-hand and right-hand pairs of traceability links.
Therefore, there are four possibilities for how R would match
over PC: not at all, on the left-hand side of PC, on the right-
hand side, or on both sides. These four possibilities define the
four new path conditions created.

The first is a copy of PC, as R is assumed to not execute
and will produce no new elements. The second is where R
will be glued on top of the backward links on the left-hand
side, to add the elements that do not exist in PC already. The
third is where the gluing will occur on the right-hand side.
The fourth path condition produced is the case where R will
be glued at both locations.

Note that rules may also contain transitive links in their
match graphs. In this case, the partial or total matching of
R onto PC must consider all transitive matches in order to
produce all valid path conditions.

As we have done for the previous cases, let us now for-
mally define the combination step when a rule has partially
and/or totally defined dependencies. As these cases are more
complex than the previous two, we will need to construct the
mathematical model of this case incrementally. We will start
by an auxiliary relation that partially or totally combines a set
of path conditions with a rule.

Definition 22 Single Partial and Total Combination of a Set

of Path Conditions with a Rule

The single rule partial and total combination relations
p comb→

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 17

Fig. 13: R’s dependencies are partially satisfied by PC

and t comb→ , both having having signature P (PATHCONDsr
tg)×

RULEsr
tg×RULEsr

tg×P (PATHCONDsr
tg) are defined as follows:

rl ∼= rlgluetma∆

〈AC,rl,rlglue〉
p comb−−−−→ AC ∪

⋃
pc∈AC pc

trace
t (rlgluetma∆)

(1)

rl ∼= rlgluetma∆

〈AC,rl,rlglue〉
t comb−−−−→

⋃
pc∈AC pc

trace
t (rlgluetma∆)

(2)

Let us start by introducing relation
p comb→ , presented in

Equation (1) of Definition 22. The relation takes as arguments
a set of path conditions being accumulated for the current
layer, the rule to be combined, and an rlglue argument indi-
cating the place in each of the input path conditions the rule
should be anchored to during the combination step. The re-
lation’s output is a new set of path conditions. This new set
includes all the original path conditions, as well as each path
condition in the accumulator set “glued” to a copy of rule
being examined. Note that the relation t comb→ in Equation (2)
of Definition 22 is similarly defined, except for the fact path
conditions in the accumulator set are not preserved in the re-
lation’s output set.

Let us now define how a rule is combined with a path
condition, whenever its backward links can be found several
times in that path condition. This situation is described in the
examples in Figure 12b and Figure 14. We formalize it in
Definition 23, by means of relations

p step→ and
t step→ . These

two relations operationally describe the sequence of steps
necessary to “glue” a rule at multiples places of a path con-
dition. The set of places targeted in the path condition for

receiving a copy of the rule is given by the sets partialSet

and totalSet (found respectively in Equation (2) and Equa-
tion (4) of Definition 23). As expected, these sets contain the
set of traceability links in the path condition where copies of
the rule need to be anchored to.

Definition 23 Multiple Partial and Total Combination of a

Set of Path Conditions with a Rule

The multiple rule partial and total combination relations
p comb→ and t comb→ , both having having signature P (PATHCONDsr

tg)×
P (RULEsr

tg)×RULEsr
tg×P (PATHCONDsr

tg) are defined as fol-

lows:

〈AC,rl, /0〉 p step−−−→ AC
(1)

rlglue ∈ partialSet, 〈AC,rl,rlglue〉
p comb−−−−→ AC′′ ,

〈AC′′,rl, partialSet \{rlglue}〉
p step−−−→ AC′

〈AC,rl, partialSet〉 p step−−−→ AC′
(2)

〈AC,rl, /0〉 t step−−−→ AC
(3)

rlglue ∈ totalSet , 〈AC,rl,rlglue〉
t comb−−−−→ AC′′ ,

〈AC′′,rl, totalSet \{rlglue}〉
t step−−−→ AC′

〈AC,rl, totalSet〉 t step−−−→ AC′′
(4)

Having Definition 22 and Definition 23 in mind, we can
now proceed to define the complete combination relation of a
rule with a path condition in the case of partially and totally
satisfied dependencies.

18 Levi LÚCIO et al.

Fig. 14: R’s dependencies are partially satisfied by PC, and are glued at all possible matches

Definition 24 Path Condition and Rule Combination – Par-

tially and Totally Satisfied Dependencies

The combination of a path condition pc and a rule rl,

when rl has dependencies that are satisfied by pc, is described

by the relation combine→ ⊆ PATHCONDsr
tg × P (PATHCONDsr

tg)×
RULEsr

tg×P (PATHCONDsr
tg), defined as follows:

rl|trace J pc|trace ,

〈AC,rl, partialsat(rl, pc)〉 p comb−−−−→ AC′′ ,

〈AC′′,rl, totalsat(rl, pc)〉 t comb−−−−→ AC′

〈pc,AC,rl〉 combine−−−−→ AC′

where

rlglue ∈ partialsat(rl, pc) ⇐⇒

rlglue v pc∗ ∧ rl|trace J rlglue ∧

@rl′ .(rlglue v rl′ v pc∗∧‖rl‖J rl′)

and

rlglue ∈ totalsat(rl, pc) ⇐⇒ rlglue v pc∗ ∧ ‖rl‖J rlglue

The top equation in Definition 24 defines the combine→ re-
lation for when rule rl has dependencies that are satisfied by
path condition pc. The pre-conditions in the equation state
that the backward links in the rule are found in the path condi-

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 19

tion, as expected. Additionally, two sequential steps perform
the gluing of the rule rl on all path conditions in accumu-
lator AC, wherever the rule is partially and/or totally found
in each of those path conditions. Relations

p comb→ and t comb→
presented in Definition 23 are used to model these two op-
erational “gluing” steps. Functions partialsat and totalsat,
described in the latter part of Definition 24, are used to gather
the places of path condition pc where copies of the rule need
to be anchored to.

4.4.3 Considering Further Rules Thus far we have described
how to create a set of path conditions that represent how one
rule from a layer will add new elements to one path condi-
tion from the previous layer. These path conditions are then
themselves combined with the next rule in the layer in the
same manner. Note that in Definition 24 the choice of next
rule does not matter, due to the rule non-interference guar-
anteed by the semantics of DSLTrans. In order to represent
this non-interference in the construction of path conditions,
we specify that the matching of rule dependencies is against
the path condition from the previous layer (variable pc in the
main equation of Definition 24), not the specific path condi-
tion the rule is to be combined with in the accumulator ar-
gument of the combine→ relation. This ensures that the result of
combining one rule with a path condition will have no impact
on how following rules will combine.

The combination of one path condition with all the rules
in the layer will produce a new set of path conditions. This
process is depicted in Figure 9 and formalized in Definition 25
by the layer combination relation

combpclayer→ .

Definition 25 Combining a Path Condition with a Layer

The layer combination relation
combpclayer→ ⊆ PATHCONDsr

tg×
P (PATHCONDsr

tg)× LAYERsr
tg × P (PATHCONDsr

tg) relation is

defined as follows:

〈pc,AC, /0〉 combpclayer−−−−−−−→ AC

rl ∈ layer, 〈pc,AC ,rl〉 combine−−−−→ AC′′,

〈pc,AC′′, layer \{rl}〉 combpclayer−−−−−−−→ AC′

〈pc,AC, layer〉 combpclayer−−−−−−−→ AC′′

After the step in Definition 25 is repeated for all the path
conditions in the previous layer, these new sets of path condi-
tions are collected together to produce the working set of path
conditions for the layer. This process is modeled by relation
combpcsetlayer→ in Definition 26.

Definition 26 Combining a Set of Path Conditions with a Layer

The path condition layer step relation
combpcsetlayer→ ⊆

P (PATHCONDsr
tg)× LAYERsr

tg × P (PATHCONDsr
tg) relation is

defined as follows:

〈 /0, layer〉 combpcsetlayer−−−−−−−−→ /0

pc ∈ AC, 〈pc,{pc} , layer〉 combpclayer−−−−−−−→ AC′,

〈AC \{pc}, layer〉 combpcsetlayer−−−−−−−−→ AC′′

〈AC, layer〉 combpcsetlayer−−−−−−−−→ AC′∪AC′′

This working set of path conditions obtained for each
layer is then itself combined with the rules in the next layer
as in the algorithm just described, to obtain yet another work-
ing set of path conditions. This process will then continue in
this layer-by-layer fashion through the transformation and is
formally described in Definition 27.
After all layers have been processed, the working set of the
last layer contains all the possible path conditions of the trans-
formation. Through our abstraction relation defined in Sec-
tion 5, the final set of created path conditions will represent
every feasible transformation execution. Section 6 will dis-
cuss how our algorithm proves properties on these path con-
ditions, and thus on all executions of thetransformation.

Definition 27 Path Condition Generation

Let [layer :: tr]∈ TRANSFsr
tg be a transformation, where layer∈

LAYERsr
tg is a Layer and tr also a transformation. The

pathcondgen→ ⊆
P (PATHCONDsr

tg)× TRANSFsr
tg×P (PATHCONDsr

tg) is defined

as follows:

〈AC, []〉 pathcondgen−−−−−−−→ AC

〈εpc,{εpc}, layer?〉 layercomb−−−−−→ AC′′ , 〈AC′′, tr〉 pathcondgen−−−−−−−→ AC′

〈εpc, [layer :: tr]〉 pathcondgen−−−−−−−→ AC

where layer? =
⋃
rl∈l

rl?

Note that in Definition 27, the recursive rule considers
the expansion (layer?) of all the rules in a layer (see Defi-
nition 15). This allows us to deal with polymorphism during
path condition generation. In particular, given one rule rl of
layer, we consider for path condition generation all rules con-
taining possible of replacements of each match element in rl

of certain type by an element belonging to one of the type’s
subtypes, as defined in the source metamodel sr.
After all layers have been processed, the working set of the

20 Levi LÚCIO et al.

last layer contains all the possible path conditions of the trans-
formation. Through our abstraction relation in Definition C.11,
the final set of created path conditions will represent every
feasible transformation execution.

Notation: We will use the abbreviation PATHCOND(tr) to
represent the set of path conditions AC produced for a trans-
formation tr, where 〈εpc, tr〉

pathcondgen−−−−−−−→ AC.

5 Abstraction Relation between Path Conditions and
Transformation Executions

In this section we define the abstraction relation between the
execution of a DSLTrans transformation and the path condi-
tion that represents it. This abstraction relation allows us to
prove properties on a finite set of representative path condi-
tions, as created by the path condition generation algorithm.
As this set is finite, our technique is guaranteed to be decid-
able.

This section also presents our arguments that our path
condition building algorithm is both valid and complete. In
this context validity means that for each path condition there
exists at least one transformation execution that it abstracts.
In other words, no path conditions are produced that lack a
concrete transformation execution counterpart. Completeness

of the symbolic execution means that every transformation
execution is abstracted by at least one path condition.

Let us start by formally defining the notion of abstraction
of a transformation execution by a path condition.

Definition 28 Abstraction of a Transformation Execution by

a Path Condition

Let tr ∈ TRANSFsr
tg be a DSLTrans transformation. Let also

pc= 〈V,E,st,τ,Match,Apply,Rules〉 ∈ PATHCOND(tr) of be

a path condition of tr and ex= 〈V ′,E ′,st ′,τ′, Input,Out put〉 ∈
Exec(tr) be an execution of tr. We have that ex is abstracted

by pc, noted ex� pc, if and only if the set of transformation

rules of tr combined in pc and the set of transformation rules

of tr used to built ex is the same, and:

(
∀rl ∈ Rules . Match(rl)C Input∗

)
∧ Out put J Apply

(1)

and

(
∀trc ∈Components(pc|trace) . trcC ex

)
∧(

∀e′ ∈ E ′∃e ∈ E . τ
′(e′) = trace =⇒ τ(e) = trace

)
(2)

To understand the abstraction relation in Definition 28, re-
call that during the construction of a transformation execution
rules are matched injectively in the input model. This infor-
mation is present in the first condition of the abstraction rela-
tion (Proposition 1) via the injective typed graph homomor-
phism between the match part of the copies of rules “glued”
onto the path condition and the containment transitive clo-
sure of the input part of the transformation execution. This
relation enforces the fact that certain parts of the execution
were found, or matched, by certain parts of the path condi-
tion. On the other hand, the surjection from the output of the
execution towards the apply part of the path condition models
the fact that the output of the execution has been completely
built by instantiating the apply parts of the rules contained in
the path condition.

The second condition of the abstraction relation (Propo-
sition 2) checks for the fact that symbolic traceability links
in the path condition and traceability links in the execution
correctly correspond to each other. This is modeled by the
fact that all strongly connected components in the path con-
dition, composed only of symbolic traceability links, are in-
jectively found on the execution. This injection models the
fact that traceability graphs between individual or combined
rules in the path condition are necessarily found in the exe-
cution. Note that components of the path condition are con-
sidered because of the fact that disconnected rules in the path
condition may have matched over common elements of a par-
ticular execution. As such, a full injection between the com-
plete traceability graph in the path condition and the execu-
tion would be incorrect. Additionally, in the second part of
Proposition 2 we check the fact that every traceability link
in the execution can be found in the path condition. This ad-
ditional sanity check enforces that no spurious traceability
links that could not have been created by the rules present in
the path condition exist in the transformation execution.

It is important to mention that another abstraction rela-
tion, weaker or stronger, could have been chosen. The ab-
straction relation presented in Definition 28 suits our needs
in the sense that it allows us to demonstrate the validity and
completeness of our proof technique, as we will show in the
text follows. Additionally, it is particularly interesting be-
cause it makes sure that, given a DSLTrans transformation,
each of its transformation executions is abstracted by one and
only one of its path conditions. This result adds to the consis-
tency of our theory and is also exposed later in this section.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 21

5.1 Examples

In this section, we provide a number of examples to demon-
strate the workings of the abstraction relation we chose to use.
Figure 15 presents the legend for the following figures.

Fig. 15: Legend for abstraction relation figures

5.1.1 Example 1 – Empty Path Condition We begin by defin-
ing which transformation executions an empty path condi-
tion will abstract. Figure 16 demonstrates two cases. In each,
the path condition is on the left-hand side, and a transfor-
mation execution is on the right-hand side. Note that in Fig-
ure 16a, the path condition abstracts the transformation exe-
cution, while in Figure 16b, the abstraction relation does not
hold.

(a) Abstraction holds

(b) Abstraction does not hold

Fig. 16: Abstraction of transformation executions by the
empty path condition

The match part of the path condition represents the pre-
conditions for the path condition to be true, depending on
which rules have symbolically executed in the transforma-

tion. For example, if the match graph is empty, this represents
all executions where no rules have executed.

The first condition for the abstraction relation is to deter-
mine whether a typed graph injective homomorphism can be
found between the match graph of the path condition, and an
transformation executions. Note that in both Figure 16a and
Figure 16b, an empty typed graph homomorphism satisfies
this condition, highlighted by blue arrows.

The second condition for the abstraction relation is whether
a typed graph surjective homomorphism can be found from
the transformation execution’s output model to the apply graph
of the path condition. This is represented by orange arrows in
Figure 16a and Figure 16b. This relation is surjective as there
may not be any elements in the output model that are not rep-
resented by the path condition’s apply graph. Note that mul-
tiple elements in the output model may match to the same
element in the apply graph of the path condition. This is ex-
pected, as the structure found in the apply graph may be found
multiple times in the output model.

The empty apply graph of the path condition defines no
post-conditions on the output model, as no rules have exe-
cuted. Note that there an empty surjective typed graph ho-
momorphism can be found between the output model of the
transformation execution in Figure 16a and the path condi-
tion. This is intuitive, as the lack of elements in the output
model means no rules have executed, which corresponds to
the lack of post-conditions defined by the path condition.

In contrast, there is no surjection between the elements
of the output model in Figure 16b and the path condition.
Note that the transformation execution has elements in the
output model and thus at least one rule must have executed.
However, the path condition does not represent that a rule
has executed. Therefore, the path condition shown does not
represent this execution.

5.1.2 Example 2 – Non-overlapping Rule Components This
second example shows the abstraction relation between path
conditions and transformation executions, when no match el-
ement of the same type appears in multiple rule components.

For these examples, we will represent the abstraction re-
lation with two figures. The first will demonstrate the match-
ing performed on match and apply graphs, while the second
figure focuses on traceability link matching.

Let us first examine how the injection operates between
the match elements in the path condition and the transforma-

22 Levi LÚCIO et al.

tion executions in Figure 17a and Figure 18a. Note that this
injection can be found in both cases.

(a) Abstraction holds on match and apply graphs

(b) Abstraction holds on traceability links

Fig. 17: Abstraction of transformation execution by non-
overlapping rule components

(a) Abstraction holds on match and apply graphs

(b) Abstraction holds on traceability links

Fig. 18: Example of abstraction over multiple rule execution

Similarly, there is a surjection between the elements of
the output model for both transformation execution and the
apply graph of the respective path condition. Note that this
surjective match also holds in Figure 18a, where examination
of the transformation execution shows that one rule has ex-

ecuted twice. As mentioned before, the abstraction relation
abstracts over the number of times that a rule has executed.

We also note that these matches must also match over as-
sociations between the elements, including association typ-
ing. This is not included in the figures for visual clarity.

We now examine Figure 17b and Figure 18b to resolve
whether the traceability links in the path condition can be
found in the transformation execution. This matching is rep-
resented by the arrows from each component highlighted in
a bold outline and differentiated by colour. We note that each
component in the path condition can be successfully found in
the transformation execution.

As well, there is a matching step from each individual
traceability link in the transformation execution onto the path
condition. Similar to the matching from the path condition,
the bold components in the transformation execution figure
are matched onto the path condition. We note that this match-
ing is successful as well.

5.1.3 Example 3 – Overlapping Rule Components For these
examples, the path conditions contain overlapping rule com-
ponents, i.e. separate rules share match elements of the same
type. Our goal is to illustrate the interaction of rule elements,
where the elements of non-dependent rules may match over
the same or different elements in the transformation execu-
tion.

For example, the two rule components in Figure 19a cor-
rectly match over the transformation execution shown. The
abstraction relation holds due to the fact that, while match el-
ements of the same component need to be found injectively in
the execution, the injection constraint does not span multiple
components. This allows the match elements from different
rules to match to the same input model element.

As well, Figure 19b shows the mapping from the path
condition to the transformation execution. However, note that
the pattern composed of the A, B, and Y elements, along with
the traceability links, is to be matched as a whole. This is
to ensure that the traceability links are found in the proper
configuration in the transformation execution.

We also match the traceability links from the transforma-
tion execution back onto the path condition. Again, this is
to ensure that no traceability links are found in the transfor-
mation execution that have not been represented in the path
condition. Three matches are performed in this step, denoted
by the three arrows in the bottom of Figure 19b. Each match

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 23

(a) Abstraction holds on match and apply graphs

(b) Abstraction holds on traceability links

Fig. 19: Abstraction of transformation execution by overlap-
ping rule components

is composed of a traceability link as well as immediately con-
nected elements.

(a) Elements cannot overlap within a component

(b) Traceability links cannot be found

Fig. 20: Abstraction does not hold

In contrast to Figure 19, Figure 20 shows an example
where the abstraction relation does not hold. Consider Fig-
ure 20a. Note that a component in the match graph of the path
condition contains two B elements. Both of these elements
must be found in the transformation execution, and thus it is
not correct for them to injectively match to the same element
in the input model.

As well, it is informative to examine Figure 20b. Note
the one of the matches from the transformation execution at-
tempts to match over ’a:A’ and ’y:Y’ elements, connected by
a traceability link. Examination of the path condition shows
that this traceability link is not present. Therefore, this path
condition cannot accurately represent this transformation ex-
ecution.

(a) Matching over match and apply graphs

(b) Matching over traceability links

Fig. 21: Abstraction with indirect links

5.1.4 Example 4 – Indirect Links We now present a path
condition in Figure 21a that includes indirect links. In this
case, for the injective match to hold, the elements at both ends
of the link must be found, and there must be an indirect link
between the matched elements and between the elements in
the transformation execution.

Note that the indirect link between elements a : A and b : B

in the transformation execution is added by the containment
transitive closure Input∗ in proposition 1 of Definition 28 to
allow matching indirect links. Note also that, for the sake of
our example, we are assuming that the links between a : A,
b : b and c : C are containment relations.

Figure 21b highlights the structures involved in matching
over traceability links. From the path condition, the structure
contains the A, B, and Y elements with connected traceability
links. From the transformation execution, there are two struc-
tures to be found in the path condition denoted in bold in the
transformation execution. The matching of all structures can
be successfully performed, and thus this abstraction relation
holds.

24 Levi LÚCIO et al.

(a) Abstraction holds on match and apply graphs

(b) Abstraction holds on traceability links

Fig. 22: Abstraction where path condition has combined rules

5.1.5 Example 5 – Combined Rules Figure 22 shows a path
condition that is composed of a multitude of rules which have
been combined in the path condition generation algorithm.
Each individual rule is surrounded by dashed lines.

Note that the matching on the match and apply graphs in
Figure 22a is similar to other examples. The combined rules
can be considered as a single graph for the abstraction rela-
tion.

Figure 22b shows the matching when multiple traceabil-
ity links are present in the transformation execution. Note that
each individual traceability link and the connected elements
are matched onto the path condition.

5.2 Validity and Completeness

In this section, we discuss the validity and completeness of
the abstraction relation. Only proof sketches are presented
here for Proposition 1 and Lemma 1, while more complete
proofs are found in Appendix C, in the proofs of Proposi-
tion C.1 and Lemma C.1 respectively.

Proposition 1 (Validity) Every path condition abstracts at least

one transformation execution.

Proof sketch. Let tr ∈ TRANSFsr
tg be a DSLTans transforma-

tion. We wish to demonstrate that, for all path conditions
pc ∈ PATHCOND(tr), there exists a transformation execution

ex∈ EXEC(tr) of the set of rules used to build pc such that pc

abstracts ex, as formally expressed in Definition 28. We can
prove this property by induction on the set of transformations
TRANSFsr

tg (see Definition 16), as follows:

– Base case: the base case is when tr is the empty transfor-
mation. In this case, according to Definition 27 only the
empty path condition εpc exists in the path condition set.
We thus need to demonstrate that the empty path condi-
tion abstracts the empty transformation execution εex, as
well as any execution for which the input model is never
matched by any rule (consequently having an empty out-
put model). For any of these transformation executions,
Proposition 1 of the abstraction relation definition is sat-
isfied, as no rule copy exists in the path condition and the
output of the transformation execution is empty – empty
typed graph homomorphisms thus satisfy the all the con-
ditions of the proposition. Proposition 2 of the abstraction
relation definition also trivially holds because no trace-
ability links exist either in the path condition or in any of
the considered executions.

– Inductive case: assuming every path condition generated
for a transformation tr abstracts at least one transforma-
tion execution, we need to show that every path condition
generated for a transformation tr′, resulting from adding
a layer l ∈ LAYERsr

tg to tr, will also abstract at least one
transformation execution.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 25

In order to demonstrate the inductive case we need to
show the property holds for all path conditions resulting from
combining the rules of layer l with any path condition gen-
erated for tr. These path conditions for transformation tr′ are
built as expressed in Definition 25. According to this defini-
tion, path conditions for tr′ are built by incrementally com-
bining the path conditions generated for tr with a rule of layer
l, until all the rules in l have been treated. We can thus again
use induction for this proof, this time on the set of possible
layers LAYERsr

tg.

– Base case: this is the case where layer l contains no rules.
In this case, by the base case of Definition 25, no new
path condition is added to the set of path conditions gen-
erated for the transformation tr. As such the tr = tr′ and
by induction hypothesis the property trivially holds for all
path conditions generated for tr′.

– Inductive case: for the inductive case (transitive case of
Definition 25) we need to show that, assuming the prop-
erty holds for all path conditions generated for a transfor-
mation tr, then the property will also hold for a transfor-
mation tr′ – where tr′ results from adding a new rule rl to
the last layer of tr. We will thus need to consider the four
cases of rule combination:

1. Rule rl has no dependencies (Definition 20).
2. Rule rl has dependencies and cannot execute (Defini-

tion 21).
3. Rule rl has dependencies and may and/or will execute

(Definition 24).

The property trivially holds for case 2, given that no new
path conditions are added to the path condition set gener-
ated for tr and that the property holds for tr by induction
hypothesis. When a rule rl is added to the last layer of
tr such that cases 1 or 3 occur, then the property can be
shown to hold for tr′ as follows: 1) choose for a general
path condition pc generated for tr an execution ex such
that pc abstracts ex; 2) build an input model m as the re-
sult of uniting the input model of ex with a model that can
be matched by rl; 3) execute tr′ having as input model
m to produce transformation execution ex′; and finally 4)
demonstrate ex′ is abstracted by the path condition pc′

resulting from combining pc with rl whether rule rl does
not depend on pc or rule rl depends on pc and may and/or
will execute.

Proposition 2 (Completeness) Every transformation execu-

tion is abstracted by one path condition.

Proof. Let tr ∈ TRANSFsr
tg be a DSLTans transformation. We

wish to demonstrate that, for all transformation executions
ex ∈ EXEC(tr), a path condition pc ∈ PATHCOND(tr) exists
such that ex is abstracted by pc, as formally expressed in Def-
inition 28.
Completeness can be shown as a corollary of Proposition 1
about the validity of path condition generation. The complete
set of executions EXEC(tr) (see Definition 17) can be split
into two kinds of executions:

1. The empty execution εex or the execution where the in-

put model was not matched by any rule. As mentioned
in Proposition 1, these executions are abstracted by the
empty path condition εpc.

2. The execution ex where a number of rules of tr have been

applied to the input model, where each transformation
rule rl of tr may have been applied more than once. In
this case we have that, because all possible and valid rule
combinations are considered when building path condi-
tions, a path combination pc exists that contains one or
more copies of each of the rules used when operationally
building ex.
Moreover, during the proof of validity of path condition
generation in Proposition 1 we demonstrate that, when
we add a new rule rl to the last layer of a transformation
tr (such that we have a new transformation tr′), the rule
combination step explained in Definitions 20, 21 and 24
produces a new set of path conditions where each path
condition in that set still abstracts at least one transforma-
tion execution of tr′. This part of the proof (the second
induction) is achieved by building for transformation tr′

an input model m that can be matched by rl (as well as
by all the other rules of tr), and then building from m a
new transformation execution that is abstracted by a path
condition built for tr′. Because in the proof of Proposi-
tion 1, m is such that it can be matched by rl an arbi-
trary amount of times, we know that, independently of the
number of times a rule is applied during the construction
of a transformation execution, a path condition abstract-
ing that transformation execution exists.
Additionally, input elements that are not matched by any
rule do not affect the abstraction relation, as explained in
case 1 above. This means we also know that executions

26 Levi LÚCIO et al.

involving input models that are only partially matched by
the rules of tr are also abstracted by one path condition.

Lemma 1 (Uniqueness) A transformation execution is abstracted

by exactly one path condition.

Proof sketch. Let tr ∈ TRANSFsr
tr be a model transformation.

We will demonstrate that two different path conditions
pc1, pc2 ∈ PATHCOND(tr) cannot exist such that we have a
transformation execution ex ∈ EXEC(tr) where ex� pc1 and
ex� pc2.

We will do so by attempting to to build an ex ∈ EXEC(tr)

such that ex� pc1 and ex� pc2 and demonstrating that it is
always the case that such is not possible. In order to structure
our argumentation, we will consider two cases:

1. the case where no rules in tr have dependencies.
2. the case where some rules in tr have dependencies.

We start by considering that tr falls into case 1 above.
By Definition 27 of path condition generation, each rule ap-
pears at most once in a path condition. Also, by construc-
tion, each path condition always contains a different combi-
nation of rules. We additionally know from Definition 16 that
the rules that compose tr necessarily have non-overlapping
matchers. We can nonetheless build a model m as the typed
graph union of two input models m1 and m2, where injective
typed graph morphisms can be found between the match parts
of the rule copies that form pc1, and m1. Injective typed graph
morphisms can be found as well between the match parts of
the rules that form pc2, and m2. We thus know that injective
typed graph morphisms can be found between the rule copies
that compose pc1 and pc2, and m. This satisfies the first con-
dition of Equation (1) in Definition 28 of abstraction relation.

Let us now consider that ex1 and ex2 are obtained by
executing the transformations rules combined into pc1 and
pc2, having m as input model. As mentioned above, we know
that the rules in pc1 and pc2 are not completely overlapping.
This means that, due to the way in which m is built (ex-
plained above), m will always have at least one input that is
matched by rules of pc1 but not by rules of pc2 (and vice-
versa). Thus, when the transformation rules combined into
pc1 execute having m as an input model, there will always
exist a traceability link generated between an input and an
output element of m that is not generated when the transfor-
mation rules combined into pc2 execute having m as an input
model (and vice-versa). As such, we have that ex1 is always

different from ex2 by at least one traceability link. Given that
this traceability link is symbolically represented in either pc1

or pc2 (but not in both), according to condition Equation (2)
in Definition 28 it cannot be that either pc1 or pc2 abstract
ex1 and ex2 simultaneously.

We will now analyse the scenario where tr falls into case 2
above, where some rules in tr have dependencies. For this
case, assume we have a path condition pc1 contained in the
set of path conditions generated for tr, considering layers up
to layer l of tr have executed. Assume also we have a rule rl

of layer l+1 of tr that has dependencies and can be combined
with pc. If rule rl is totally combined with path condition
pc1, according to Definition 24 and Figure 12b, then nothing
needs to be shown as pc1 is not kept in the path condition set
but rather replaced by its combination with rl. However, in
case rule rl is partially combined with pc, as defined in Defi-
nition 24 and Definition 22, then multiple path conditions are
generated and additionally pc1 is kept in the path condition
set.
The proof will be complete once it is shown that for the path
conditions that are generated when rules are partially com-
bined, it is also the case that no two path conditions can ab-
stract the same execution. This last part of the proof can be
built in an analog fashion to the construction of the proof for
point 1. As previously mentioned, the complete proof can be
found as Lemma C.1 in Appendix C.

6 Verifying Properties of DSLTrans Transformations

The algorithm presented in Section 4 will produce all pos-
sible path conditions for a given DSLTrans transformation.
This section will detail our second contribution: a method to
prove properties on the transformation by examining the path
conditions generated for it. We then rely on the abstraction
relation presented in Definition 28 to extrapolate the proof
result to all of the transformation’s executions.

The properties we are interested in have an implication
form. Similarly to rules and path conditions, properties are
largely composed of two patterns. They represent the follow-
ing statement: whenever this pattern is found in the input
model, then this other pattern must be found in the output
model, possibly including traceability constraints.

The property proving algorithm is relatively simple. The
match part of a path condition includes a representation of all

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 27

the elements and relations “touched” in the input model of
a set of transformation executions. Likewise, the property’s
pre-condition pattern represents the prerequisite for the prop-
erty. Thus, the property proving algorithm will attempt to find
the property’s pre-condition pattern in the path condition’s
match graph. If not found, then the property will not be vali-
dated on this path condition, as the prerequisites do not exist.

Whenever the property’s pre-condition pattern is found,
the property’s post-condition pattern is searched for in the
path condition. If also found, then the rule execution(s) de-
fined by that path condition will produce the required el-
ements for that property and the property will hold. If not
found, then the necessary elements will not be produced and
the property check will fail for that path condition.

Path conditions for a transformation are checked to under-
stand whether the property of interest holds on all of them.
If it does, then by making use of the abstraction relation in
Section 5 between path conditions and transformation execu-
tions, we can deduce that the property then holds for all trans-
formation executions. If not, we deduce the property does not
hold for at least one transformation execution. Later in this
section we will develop a formal argument for why this is
true.

6.1 Structure of a Property

We will now elaborate on the structures and the relations re-
quired for the property proving algorithm. Let us start by pre-
cisely defining what a property of a transformation is.

Definition 29 Property of a Transformation

Let tr ∈ TRANSFsr
tg be a DSLTrans transformation. A prop-

erty of tr is a 6-tuple 〈V,E,(s, t),τ,Pre,Post〉, where Pre =

〈V ′,E ′,st ′,τ′〉 ∈ IPATTERNsr and Post = 〈V ′′,E ′′,st ′′τ′′〉 ∈
IPATTERNtg are indirect metamodel patterns. We also have

that V =V ′∪V ′′, E ⊆ E ′∪E ′′ and τ⊆ τ′∪ τ′′, where the co-

domain of τ is the union of the co-domains of τ′ and τ′′ and

the set {trace}. An edge e ∈ E \ E ′ ∪ E ′′ is called a trace-
ability link and is such that s(e) ∈ V ′′, t(e) ∈ V ′ and τ(e) =

trace. Finally we have that there is at least one path condition〈
Vpc,Epc,stpc,τpc,Match,Apply,Rule

〉
∈ PATHCOND(tr) for

which a surjective typed graph homomorphism m
f
J Pre ex-

ists, where m v Match and f (v) 6= f (v′) if v and v′ are ele-

ments of the path condition belonging to the same rule of set

Rule. The set of all properties of transformation tr is called

PROPERTY(tr).

In Definition 29, pre-conditions use the same pattern lan-
guage as the match graph in DSLTrans rules, allowing the
possibility of including several instances of the same meta-
model element as well as indirect links in the property. Indi-
rect links in properties have the same meaning as in the rule
match graph – they involve patterns over the transitive closure
of containment links in pre-condition graphs.

Post-conditions also use the same pattern language as the
apply graphs of DSLTrans transformation rules, with the ad-
ditional possibility of expressing indirect links in post-conditions.
Traceability links can also be used in properties to impose
traceability relations between pre-condition and post-condition
elements.

Note that Definition 29 includes a condition stating a sur-
jective typed graph homomorphism needs to exist between
the match part of at least one of the transformation’s path
condition, and the pre-condition of the property of interest.
This condition makes sure that the property’s pre-condition
can be found at least in one execution of the transformation
abstracted (the mathematical argument for this fact is given in
the proof of Proposition 3). This condition makes the check-
ing the validity of a property in the transformation mean-
ingful. If this condition would not be true then it could be
that the input pattern required by the property would never be
fully matched during transformation execution, making such
a property not relevant3 for the transformation at hand.

6.2 Satisfaction of a Property

Let us now detail how a transformation execution is said to
satisfy a property. Due to the common structure between prop-
erties and transformation executions, this satisfaction is based
on whether the property can be isomorphically found in the
transformation execution.

Definition 30 Satisfaction of a Property by an Execution of a

Transformation

Let tr∈ TRANSFsr
tg be a transformation. Let also p= 〈V,E,st,τ,

Pre,Post〉 ∈ PROPERTY(tr) be a property of tr and ex= 〈V ′,E ′,
st ′,τ′, Input,Out put〉 ∈ Exec(tr) be an execution of tr. Exe-

3 In [6] we have referred to these properties non-provable. In the
work presented here we explicitely disallow the construction of this
class of properties.

28 Levi LÚCIO et al.

cution ex satisfies property p, written ex |= p, if and only if:

∀ f ∃g .
(
Pre

f
C Input∗ =⇒ p

g
C ex∗

)
where V (Input)∩CoDom(g) =CoDom(f)

Definition 30 states that, every time a graph that is iso-
morphic to the property’s pre-condition is found in (the con-
tainment transitive closure of) the input model of the transfor-
mation’s execution, a graph that is isomorphic to the complete
property needs to be found in (the containment transitive clo-
sure of) the transformation execution. Note that the last part
of the proposition in Definition 30 ensures that the graph that
is isomorphic to the property’s pre-condition and the graph
that is isomorphic to the complete property overlap on their
pre-condition parts.

Figure 23a demonstrates how a property holds on a trans-
formation execution. Note that the lack of traceability links
in the property means no element creation dependencies have
been specified. In contrast, the traceability links in the prop-
erty in Figure 23b specify that the ’x:X’ element must have
been created from the ’b:B’ element in the transformation ex-
ecution. This is not the case (as highlighted by the dashed red
circle), and therefore the property does not hold on the trans-
formation execution.

(a) Property holds

(b) Property does not hold

Fig. 23: Matching property to a transformation execution

Due to the fact an infinite amount of transformation ex-
ecutions exists, proving the property directly on the set of
transformation executions is not possible. We thus rely on
the finite set of path conditions to prove properties about the
set of all transformation execution. Let us then define what

it means for a property to hold on, or be satisfied by, a path
condition.

Definition 31 Satisfaction of a Property by a Path Condition

Let tr∈ TRANSFsr
tg be a transformation. Let also p= 〈V,E,st,τ,

Pre,Post〉 ∈ PROPERTY(tr) be a property of tr and pc=
〈
V ′,E ′,

st ′,τ′,Match,Apply,Rulecop
〉
∈ PATHCOND(tr) be a path con-

dition of tr. Path condition pc satisfies property p, written

pc ` p, if and only if:

∀ f ∃g .
(
in

f
J Pre =⇒ out

g
J p

)
where invMatch∗ ∧ out v pc∗

Additionally Dom(g)∩Match(pc∗) = Dom(f) and f (v) 6=
f (v′), g(v) 6= g(v′) whenever v and v′ are elements of the path

condition belonging to the same rule copy of set Rulecop.

The principle behind the satisfaction relation in Defini-
tion 31 is the same as the one behind the satisfaction relation
between a property and an execution of a transformation in
Definition 30: whenever the property’s pre-condition is found
in the path condition then so is the complete property. Also,
those two graphs found in the path condition share the prop-
erty’s pre-condition part. This last condition enforces that the
pre- and post-conditions of the property are correctly linked
by symbolic traceability links in the path condition.

Note that, despite their semantic similarity, the relations
are expressed differently in Definition 30 and Definition 31.
In Definition 30 – satisfaction of a property by an execution

of a transformation, typed graph injective homomorphisms
are defined from the property into the execution. However, in
Definition 31 the direction of the typed graph surjective ho-
momorphisms is from the path condition into the property.
This can be explained by the fact, mentioned previously in
this text, that different rules in a path condition may have ele-
ments that match over the same concrete instances of a trans-
formation’s input model. As such, we need to consider the
case where match elements of a path condition, originating
from different rules, overlap.

Fig. 24: Property satisfied by a path condition

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 29

This overlapping is modeled by the surjective typed graph
homomorphisms of Definition 31 having the property as co-
domain. The surjections allow “forgetting” that two match
elements of the path condition belong to different rules. Note
however that these surjections are special, as two elements
belonging to the same copy of a rule have to be mapped in-
jectively onto the property. This situation is depicted in Fig-
ure 24. Note that element B is successfully matched even
though it appears in two different rules in the path condition.

6.3 Expressiveness of the Property Language

As a result of taking rule combination (Section 4) and overlap
(Section 6.2) into consideration, our technique allows prov-
ing properties of transformation executions that are matched
and built by multiple rules. This is the main goal of our work,
as the properties we are interested in regard all possible in-
teractions of rules in a DSLTrans transformation. However,
an expressiveness limitation of the property language exists:
we cannot prove properties having pre-conditions that can
be found by executing the exact same rule more than once.
This is natural, as by definition our abstraction only consid-
ers one exemplar of each rule per path condition having the
exact same type for each match element.

In order to illustrate this limitation, consider a transforma-
tion having one single rule that matches an elements of type
A and that produces an element of type X. Our technique will
create a path condition as seen in Figure 25a, abstracting over
the number of times this rule has executed. According to the
definition of satisfaction of a property by a path condition in
Definition 31, the property in Figure 25b does not hold on the
path condition in Figure 25a, although intuitively it should.

(a) Path condition
created from a rule

(b) Property with multiple
instances of rule elements

Fig. 25: Example of unprovable property

Although this might be seen as a limitation of our tech-
nique, our case studies thus far indicate that very interesting
properties exist that exclusively regard interactions between
different rules. Nonetheless, our technique could be extended

in order to consider more than one exemplar of the same rule
per path condition. In fact, theoretically we already consider
more than one exemplar of each rule when we treat polymor-
phism during path condition generation (see Definition 27).
However, in this case all expanded rules for a rule rl are con-
sidered to be different as they differ by at least the type of one
match element. Although this extension seems to fit relatively
simply in our current theory, additional steps would need to
be taken to understand which rules would be interesting to
replicate to prove a particular property, and how many exem-
plars of each rule should be considered. In operational terms
the number of replicas to consider of each rule is very impor-
tant, given the exponential complexity of our path condition
generation and property proof algorithms. Another possibil-
ity to tackle this issue would be to investigate and implement
a more powerful satisfaction relation between path conditions
and properties than the one we now present in Definition 31.

6.4 Validity and Completeness

As for the path condition building algorithm, validity and
completeness need to be examined regarding our property
verification algorithm. In this context validity means that if
a property is satisfied by all path conditions generated for a
transformation tr, then that property is satisfied by all execu-
tions of that transformation. On the other hand, if the property
is not satisfied by at least one path condition, then it will not
be satisfied by at least one transformation execution. In other
words, we wish to show that no false positive or false negative
proof results are induced by the abstraction relation.

On the other hand, completeness means that we are sure
that all properties that can be expressed about a transforma-
tion can be shown to hold or not hold in all transformation
executions.

As with the proofs for the validity and completeness of
the abstraction relation, we present only proof sketches in this
section in the interest of readability. Full proofs are shown in
Appendix D as Proposition D.1 and Proposition D.2.

Proposition 3 (Validity) The result of proving a property on

a set of path conditions generated for a transformation or an

all executions of that transformation is the same.

Let tr∈ TRANSFsr
tg be a transformation and p∈ PROPERTY(tr)

be a property of tr. Given this, we have that transformation

30 Levi LÚCIO et al.

tr satisfies property p if and only if:

∧
pc∈PATHCOND(tr)

pc ` p ⇐⇒
∧

ex∈EXEC(tr)

ex |= p (3)

Proof sketch. In order to prove the proposition in Equation (3)
we will start by demonstrating that, if property p holds on a
path condition pc generated for tr, then p will necessarily
hold on all execution ex of tr that is abstracted by pc. On the
other hand, if p does not hold on pc then it will not hold for
at least one execution ex of tr abstracted by pc. This lemma
can be stated as follows:

pc ` p ⇐⇒ ∀ex ∈ {ex ∈ EXEC(tr) | ex� pc} . ex |= p (4)

We thus need to demonstrate both directions of the equiva-
lence in Equation (4), as follows:

– The proof of the left-to-right direction of the equivalence
is split into two cases as pc ` p is true (as stated in Def-
inition 31) when either: (1) the pre-condition of property
p cannot be found in path condition pc; or (2) the pre-
condition of p is found in pc and the post-condition of p

also. We need to demonstrate that both these cases entail
that ex |= p holds.

– The proof of the right-to-left direction of the equivalence,
which can be shown on its contrapositive:

¬(pc ` p) =⇒

∃ex ∈ {ex ∈ EXEC(tr) | ex� pc} . ¬(ex |= p) (5)

According to Definition 31, to demonstrate Equation (5)
we will need to show that when the pre-condition of prop-
erty p is found in pc but the post-condition of p is not, the
property does not hold on at least one execution of tr ab-
stracted by pc.

Once Equation (4) is proved, we know that all path con-
ditions on which a property holds represent executions on
which the property also holds. Thus, if the property holds on
all path conditions then it necessarily holds on all executions.
On the other hand, if a property does not hold on one path
condition, making it such that the conjunction on the left side
of the equivalence in Equation (3) is false, then according to
Equation (4) an execution for which it also does not hold ex-
ists. This makes it such that the conjunction on the right side
of the equivalence in Equation (4) is also false.

Proposition 4 (Completeness) Properties of a transformation

can be shown to either hold for all transformation executions,

or not hold for at least one transformation execution.

Proof. This results follows from two previous results: Propo-
sition 2, that tells us that every transformation execution is ab-
stracted by one path condition; and Proposition 3 that shows
us that every path condition is taken into consideration during
property proof. Note that Lemma 1 guarantees consistency of
our results, in the sense that the uniqueness of one path condi-
tion per transformation execution guarantees that a property
cannot be proven to be both true and false for two path con-
ditions representing the same transformation execution.

7 Implementation Details

In this section we will briefly describe our implementation of
the algorithms described in the above sections. In particular,
we highlight optimizations made and provide results suggest-
ing that our algorithms can feasibly scale to industrial-sized
applications.

7.1 Enabling Technology and Prototype

In previous work we have reported on the usage of Prolog as
a means to build a proof-of-concept prototype for our tech-
nique [4]. The experiments performed using Prolog were in-
conclusive regarding the scalability of our technique given
that the path condition construction algorithm as now de-
scribed in Section 4 lacked a formal understanding, as well
as several other imprecisions. As such, no performance opti-
misations were attempted.

Through our sponsorship by the NECSIS (Network for
the Engineering of Complex Software-Intensive Systems for
Automotive Systems) project, we have the opportunity to ap-
ply our verification technique in an industrial setting. In or-
der to achieve high performance in this setting, despite the
complexities of verification techniques, we were required to
choose an underlying efficient implementation framework.
Our goals were to select a framework which: 1) allows graph
manipulation natively. This detaches us from the worries of
building and optimising our own subgraph isomorphism NP-
complete algorithms, which are constantly used during path
condition construction; and 2) allows detailed control over
graph manipulation such that the implementation of complex
optimizations is feasible. These optimizations are potentially

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 31

required to apply our technique to large and complex model
transformations.

We have chosen T-Core [20,21] as our graph manipula-
tion framework. Aside from satisfying our basic requirements
described above, T-Core allows for native rewriting of typed
graphs, which considerably eases our implementation effort.
The algorithms described throughout this work have been im-
plemented by scheduling T-Core graph manipulation primi-
tives using the Python programming language.

7.2 Complexity

Let us motivate our discussions of optimisation and perfor-
mance by providing an approximate formula for the com-
plexity of the path condition construction and property proof
algorithms presented in Sections 4 and 6.

7.2.1 Path Condition Generation Recall that a DSLTrans
transformation is composed of rules arranged in layers. The
path condition generation algorithm described in Section 4
moves through these layers and combines rules into viable
path conditions.

Let the number of rules in the transformation be r. Then,
the maximum number of path conditions that can be created
is 2r. Each path condition will either represent a rule or not,
and therefore the 2r path conditions represent all possible rule
combinations. Note that this case assumes that all path con-
ditions are viable. In practice, unsatisfied rule dependencies
will prevent some rule combinations, reducing the number of
path conditions created.

As discussed in Section 4, the path condition generation
algorithm builds these path conditions by considering all pos-
sibilities of how a rule can combine with a path condition.
This combination step is composed of two algorithmic com-
ponents. The first is to determine all positions where the rule
matches over the path condition. Let this matching step be m.
Note that this matching step is dependent on the size of the
rules.

The second step of the combination step is to ”glue” the
rule at all matching positions. Let this step be termed g. This
step is linear in the size of the rule to be glued multiplied by
the number of times the rule has matched in step m.

Note that m and g could be quite expensive operations.
However, in our implementation, these steps are implemented
using the efficient T-Core graph manipulation framework.

O
(
2r · (m+g)

)
(6)

Equation (6) presents the time and space complexity for
the path condition generation algorithm.

7.2.2 Property Proof For our property proving algorithm,
recall that each path condition created is examined to see if
the property in question holds.

As mentioned in Section 6, a path condition must be
matched by the property. However, different elements in the
path condition may overlap (have been matched on) on the
same elements in the input model, as described in Section 6.2.
Therefore, an operational step is required to resolve this am-
biguity. One solution is to produce all possible path condi-
tions, where for each pair of overlapping elements in a path
condition, one new path condition is produced where they are
merged, and one new path condition where they are not.

The complexity of this “disambiguation step” will be pro-
portional to the average number of overlapping elements in
the path condition, and will be denoted by the term d in this
discussion. Practically, d will be dependent on how rules are
combined during the path condition generation algorithm. Fu-
ture work will precisely detail how the characteristics of the
transformation affect the algorithm’s complexity.

The complexity of the matching step will then be linear in
the size of the set of path conditions. The property matching
step itself (p) will then be linear in the size of the property and
path conditions. Again, in practice p is implemented using the
T-Core framework.

O
(
2r ·2d · p

)
(7)

Equation (7) shows time and space complexity for the
property proving step.

7.3 Optimisations

In order to tackle the time and space complexities of the path
condition construction and property proof algorithms we have
employed several engineering strategies. In the following para-
graphs we describe the most relevant of these strategies.

– Path condition construction and property proof are very
repetitive processes since most individual rules are often
composed and searched in the same manner. Since many
similar situations have to be investigated during path con-
dition construction and property proof, memoisation was

32 Levi LÚCIO et al.

used whenever possible to avoid isomorphic graph match-
ing and rewrite operations. As such caching is heavily
used in both algorithms;

– In Section 7.2.2 we detail how the overlap of elements
in a path condition can be operationally handled by pro-
ducing two new path conditions for each pair of over-
lapping elements. Given this procedure is recursive and
presents exponential time complexity, we have performed
this “disambiguation” step only when strictly necessary:
when performing property verification on a path condi-
tion that contains the elements in the property. Note that
the fact that disambiguation is performed in this lazy fash-
ion allows us to operationally keep path conditions as sets
of individual rules. This makes it possible to heavily reuse
pointers to the original transformation rules when build-
ing path conditions, thus reducing the algorithm’s space
complexity when compared to the explicit representation
of each generated path condition. This also means that,
practically, path condition disambiguation is mostly done
on demand during property proving;

– For property proof we have implemented a strategy to
avoid checking path conditions where the property is sure
to hold. The strategy is based on the fact that if a path
condition B contains the same elements as a path condi-
tion A where the property has already been checked suc-
cessfully, and no additional elements of the property exist
in B, then the property also holds for B.

8 Experiments

This section will detail the experiments we performed in or-
der to measure the performance of our technique. We present
timing results for two experiments. The first is to obtain tim-
ing results for proving two properties on a synthetic trans-
formation, while the second experiment is sourced from our
industrial partners.

8.1 Experimental Setup and Results

The complexity of Equation (6) and Equation (7) suggest that
our property proving approach is intractable in the general
case. However, we have provided in Section 7.3 a number
of concrete optimisations to allow us to prove properties on
transformations of non-trivial size. This section will detail
our experiments to determine the effect of the number of rules

in the transformation on the performance of our implementa-
tion.

For our experiment we have used the Police Station trans-
formation as described in Section 2 as a sample transforma-
tion. However, in order to determine the performance charac-
teristics of our approach, we have replicated the rules within
the transformation.

This was achieved by synthetically augmenting the origi-
nal metamodels by replicating their elements twice, thus build-
ing source and target metamodels that are three times larger.
For example, in the source metamodel we will now have Sta-

tion1 (renamed from the original Station class) and its repli-
cas Station2 and Station3. These three metamodel elements
are distinct from each other and are formally three different
types. We have also added new rules that utilise these new
types, as seen in Figure 26.

S1

S1

M1

M1

F1

F1

S1

S1

M1

M1

S1

S1

F1

F1

M1

M1

M1

M1

F1

F1

F1

F1

S2

S2

M2

M2

F2

F2

S2

S2

M2

M2

S2

S2

F2

F2

M2

M2

M2

M2

F2

F2

F2

F2

S3

S3

M3

M3

F3

F3

S3

S3

M3

M3

S3

S3

F3

F3

M3

M3

M3

M3

F3

F3

F3

F3

Layer 1

Layer 2

Layer 3

Layer 4

Fig. 26: Replicated Police Station transformation for perfor-
mance tests

Note that for clarity reasons in Figure 26 we have ab-
breviated the element names Station, Male and Female to S,
M and F respectively. Additionally, the numerical suffix de-
notes which replicated metamodel element is represented, as
described above.

8.1.1 Results The results in Table 1 were obtained by veri-
fying the properties in Figures 4a and 4b on the transforma-
tion seen in Figure 26. The experimental platform was a 2.2
GHz Intel Core i7 machine with 8GB of DDR3 memory run-
ning Ubuntu 11.10 and Python 2.7. For each measurement
involving time, we repeated the given experiment three times
and calculated the final result as the average of the three ex-
periment results. The code used to run our experiments can
be found at [22].

8.1.2 Time Required to Produce Path Conditions An im-
portant metric for our work is measuring how long it takes

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 33

of
rules

of path conds.
created

Path conds. build
time (s)

Memory used
(KB)

Proof time for prop-
erty that holds (s)

Proof time for property
that does not hold (s)

3 8 <0.01 0.08 - -
5 16 0.13 0.09 0.19 0.003
7 34 0.39 0.17 1.26 0.003

10 272 1.87 1.24 2.40 0.003
12 442 2.68 1.83 3.40 0.003
14 1156 9.00 4.98 8.38 0.003
17 9248 59.08 38.01 73.51 0.003
19 15028 97.52 60.10 140.77 0.003
21 39304 369.19 156.79 412.02 0.003

Table 1: Results for creating the set of all path conditions and proving two properties

to produce the final set of path conditions from a DSLTrans
transformation. As seen in Section 7.2, this metric depends on
the composition of the rules in the transformation’s layers.

The first column of Table 1 shows the number of rules for
each part of the experiment. In order to provide greater gran-
ularity in the data, and determine the precise effect of adding
more rules to a layer versus adding another layer of rules, we
examine subsets of rules taken from Figure 26. For example,
the subset with five rules contains the three first rules of layer
1 plus the two first rules of layer 2; the subset with seven rules
contains the first three rules of layer 1 plus the four first rules
of layer 2; and so on.

Figure 27a presents the number of path conditions cre-
ated for a given number of rules, while Figure 27b graphs the
time taken to create all the path conditions. Both the number
of path conditions and the time required to build them rise
steeply with the number of rules, but it is quite feasible to
build path conditions and prove properties for up to 21 rules.
As shown later in the section on industrial experimentation,
21 rules exceeds the number of rules in our industrial case
study. It also exceeds the number of rules in several useful
DSLTrans transformations [7–9].

Table 1 and Figure 27c demonstrate that memory con-
sumption is very modest, remaining well under a megabyte
for thousands of path conditions. This is due to the optimisa-
tions that we perform, such as only storing pointers to path
conditions. We are encouraged that this algorithm can scale
extremely well in terms of respecting memory constraints.

8.1.3 Time Required to Prove Properties We now examine
the time it takes to prove two properties on the transforma-
tion based on the number of path conditions created from that
transformation. The two properties to be proven are shown in
Figure 4 in Section 2. The first, in Figure 4a, is a property that

we expect to hold for all path conditions. Figure 4b shows a
property that we expect to not hold for all path conditions.

Fig. 28: Time required to prove the property that holds on all
path conditions

Figure 28 shows the time in seconds required to prove the
property that holds on all path conditions, as seen in the fifth
column in Table 1. Note that the time taken increases linearly
with the number of path conditions to examine. This increase
occurs as each property must be checked to ensure that the
property will hold.

In contrast, the time required to disprove the property that
does not hold is roughly constant. This can be seen in the
sixth column in Table 1, where this proof took 0.003 seconds
regardless of the number of path conditions examined. This is
due to the fact that, given the property does not hold, the proof
algorithm can stop as soon as a counterexample is found. The
very short time to disprove the property is due to the fact that
path conditions are checked for the property sequentially, in
the order they are produced. In our example, a counterexam-
ple can be found very early in the set of path conditions. Note
that a more complex property that involves rules which would
appear only much later in the generated set of path conditions
would require a longer time to reach a counter-example.

34 Levi LÚCIO et al.

(a) Number of rules vs.
path conds. created

(b) Number of rules vs.
time taken

(c) Number of rules vs.
memory used

Fig. 27: Metrics for the path condition creation process

Experiments were also undertaken to determine what ef-
fects the size of the property to be proved has on the running
time of the algorithm. Preliminary results indicate that an in-
crease of the property size results in a proportional increase in
running time. This is to be expected, as the underlying graph
matching algorithm has to match more elements to determine
if the property holds or not.

8.2 Industrial Experimentation

Aside from the experiments with the police station transfor-
mation we have reported in the previous section, we have ap-
plied our technique in the context of the NECSIS project. The
experiment regards a DSLTrans transformation that maps be-
tween subsets of a proprietary metamodel from General Mo-
tors, describing legacy automotive configuration data, and the
AUTOSAR metamodel, an open platform shared by car man-
ufacturers. This DSLTrans mapping transformation includes
seven rules, distributed among three layers. Further details of
this experiment can be found in [5] and a complete descrip-
tion of the transformation can be found in [23].

Our path condition generation approach generates a set of
three path conditions for the transformation in approximately
0.8 seconds. This low number of path conditions is due to the
fact that several rules overlap, as explained in Definition 16
of Section 3. Such overlapping causes the number of formed
path conditions to be smaller than in the case where no over-
laps occur, as certain combinations need not be considered
due to rule dependency.

In [18] we also describe the proof of nine properties (mul-
tiplicity invariants, security invariants and pattern contracts)
that demonstrate several aspects of the correctness of this
mapping transformation. The proof of these properties on all
executions of a migration transformation is of interest to our

industrial partners in order to ensure that the migration does
not add extraneous elements or delete any needed informa-
tion.

All properties were proved in around 0.02 seconds by our
approach, and were expressed using a propositional logic ex-
tension to the property language that we present in this pa-
per. Note that, despite the fact that not all aspects of the case
study (overlapping rules, propositional logic extension) are
considered theoretically in this manuscript, the obtained re-
sults are nonetheless very interesting in terms of the experi-
mental scalability of our approach. In particular, we note that
our verification approach performs orders of magnitude faster
compared to an ATL-based verification tool that verified the
same transformation [18].

8.3 Discussion

The experimental results of verifying the test Police Station
transformation portrayed in the graphs of Figure 27 show
that, as predicted by complexity Equation (6), both the path
condition construction time and the number of created path
conditions grow exponentially with the number of rules. In
Figure 28 we can also see that property proving time for
properties that hold increases linearly with the number of
path conditions, as was also theoretically predicted in Sec-
tion 7.2. Despite the exponential time and space complexi-
ties of the path condition construction algorithms, our exper-
iments suggest that real-world sized model transformations
can be tractable by employing the optimizations described
in Section 7.3. We also believe further optimization oppor-
tunities of our algorithms exist and that the number of rules
handled by our approach can be driven higher.

The industrial case study presented in Section 8.2 sug-
gests that validation of practical model transformations is not

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 35

always very computationally expensive. In fact, the properties
we have proved in this industrial case study are of practical
use for our partners, yet required only fractions of seconds to
prove.

From the differences in the examples we have presented
in this section and from our experience with building DSLTrans
transformations we believe that the complexity of verifying
real-word model transformations can vary within a wide range.
The complexity of Equation (6) provides us a referential that
can be used when evaluating the theoretical and operational
complexities of verifying further case study transformations.
This complexity is influenced by several parameters that de-
scribe the shape of a model transformation, and we believe
the study of those parameters in further case studies is very
important. Refining Equation (6) will provide better precision
in our theoretical estimations and also direct our optimiza-
tion efforts by understanding what transformation parameters
have the highest impact on performance.

9 Related Work

In order to analyse the work in the literature that is close to
our proposal, we will make use of the study on the formal
verification of model transformations proposed in [3]. The
study uses three dimensions to classify the analysis of model
transformations. The dimensions are: 1) the kind of transfor-

mations considered; 2) the properties of transformations that
can be verified; and 3) the verification technique used.

Kind of Transformations Considered DSLTrans is a graph
based transformation language and as such shares its prin-
ciples with languages such as AGG [24], AToM3 [25], VIA-
TRA2 [26], ATL [27] or VTMS [28]. As mentioned previ-
ously, DSLTrans’ transformation are terminating and conflu-

ent by construction. This is achieved by expressiveness re-
duction which means that constructs which imply unbounded
recursion or non-determinism are avoided. DSLTrans is, to
the best of our knowledge, the only graph based transforma-
tion language where these properties are enforced by con-
struction.

It is recognized in the literature that termination and con-

fluence are important properties of model transformations, as
these transformations have properties that are easier to un-
derstand and analyse. However, termination is undecidable
for graph based transformation languages [29]. This prob-
lem has led to a number of proposed termination criteria, as

well as criteria analysis techniques, for transformations writ-
ten in graph based transformation languages [30–34]. Conflu-
ence is also undecidable for graph based transformation lan-
guages [35]. As for termination, several confluence criteria
and corresponding analysis techniques have been proposed
in the literature [36,34,37,38].

Verifiable Properties of Transformations According to the
classification in [3] the technique presented in this paper deals
with properties that can be regarded as model syntax rela-

tions. Such properties of a model transformation have to do
with the fact that certain elements, or structures, of the in-
put model are necessarily transformed into other elements, or
structures, of the output model.

As early as 2002, Akehurst and Kent have introduced a set
of structural relations between the metamodels of the abstract
syntax, concrete syntax and semantics domain of a fragment
of the UML [10]. Although they do not use such relations
as properties of model transformations, their text introduces
the notion of structural relations between a source and a tar-
get metamodel for a transformation. In 2007, Narayanan and
Karsai propose verifying model transformations by structural
correspondence [11]. In their approach, structural correspon-
dences are defined as pre-condition/post-condition axioms.
As the axioms provide an additional level of specification of
the transformation, they are written independently from the
transformation rules and are predicate logic formulas rely-
ing solely on a pair of the transformation’s input and output
model objects and attributes. The verification of whether such
predicates hold is achieved by relying on so-called cross links
(also named traceability links in [3]) that are built between
the elements of the input and output transformation model
during the transformation’s execution.

Although our proposal follows the same basic idea as the
work of Narayanan and Karsai, there is one essential differ-
ence. Narayanan and Karsai’s technique is focused on show-
ing that pre-condition/post-condition axioms hold for one ex-
ecution of a model transformation, involving one input and its
corresponding output model. Thus, according to [3] the tech-
nique is transformation dependent and input dependent. In
our proposal, we aim at proving structural correspondences
for all executions of a model transformation, and base the
construction of the properties (or pre-condition/post-condition
axioms, using the vocabulary in [11]) on the source and target
metamodel structures. Our approach is thus transformation

dependent but input independent and aims at achieving the

36 Levi LÚCIO et al.

proof of the same kind of properties as Narayanan and Karsai
propose, but one meta-level above.

In 2009 [12] Cariou et al. study the use of OCL contracts
in the verification of model transformations. The approach
is also transformation dependent and input dependent in the
sense that it requires an input model and an output model of
the transformation. However, the authors provide a good ac-
count how to build OCL contracts for model transformations
and show how to verify those contracts for endogenous trans-
formations.

Aztalos, Lengyel and Levendovszky have published in
2010 their approach to the verification of model transforma-
tions [16]. They propose an assertion language that allows
making structural statements about models at a given point of
the execution of the transformation and also statements about
the transformation steps themselves. The authors’ technique
applies to transformations written in the VTMS transforma-
tion language [28]. The technique consists of transforming
VTMS transformation rules and verification assertions into
Prolog predicates such that deduction rules encoding VTMS’s
and the assertion language’s semantics can be used on auto-
mated Prolog proofs to check whether those assertions hold
or not.

The approach resembles ours in the sense that the tech-
nique is also transformation dependent but input indepen-

dent (the authors call their technique offline). The artifacts
used in the proofs are also generated from the transforma-
tion and the properties to be proved. While it is foreseeable
that our model syntax relations properties might be expressed
by the assertion language proposed by Aztalos et al., the au-
thors provide no account of the scalability of their approach.
They mention however that since their approach is based on
the generic SWI-Prolog inference engine, there could be a
performance bottleneck or the possibility of non-terminating
computations. They foresee that a specialised reasoning sys-
tem might be necessary for their approach to scale.

More recently in 2012 and 2013, Guerra et al. [39] have
proposed techniques for the automated verification of model
transformations based on visual contracts. Their work de-
scribes a rich and well-studied language for describing syn-
tactic relations between input and output models. These pre-
and post- condition graphs then are transformed into OCL
expressions, which are fed into a constraint-solver to gen-
erate test input models for the transformation. Their frame-
work algorithm can then test a transformation on a number of

these input models, and verify them by the OCL expressions.
The approach is transformation dependent and input inde-

pendent and is independent of the transformation language
used, which is a feature that we have not found elsewhere
in the literature. However the verification technique used by
Guerra et al. differs fundamentally from ours. Our abstrac-
tion over the number of elements of the same type present in
the model enables our approach to be exhaustive and allows
for correctness proofs, while the approach by Guerra et al.

is aimed at increasing the level of confidence in a transfor-
mation through coverage of test cases. A similar white-box
generation approach is also seen in recent work by González
and Cabot [40].

Also in 2012 Büttner at al. have published their work
on the verification of ATL transformations [15,14]. In [15]
the authors translate ATL transformations and their semantics
into transformation models in Alloy. They then use Alloy’s
model finder to search for the negation of a given property
that should hold, where the property is expressed as an OCL
constraint. As the authors mention, Alloy performs bounded
verification and as such it does not guarantee that a counterex-
ample is found if it exists. In [14] Büttner at al. aim at proving
model syntax relation properties of ATL transformations ex-
pressed as pre-condition/post-condition OCL constraints. In
order to do so, the authors provide and use an axiomatisation
of ATL’s semantics in first order logic. Verification of a given
model transformation is achieved by using a HOT to trans-
form the transformation under analysis into additional first
order logic axioms. Off-the-shelf SMT solvers such as Z3 and
Yices are then used to check whether the pre-condition/post-
condition OCL constraints hold.

The approach in [14] comes very close to ours as the au-
thors aim at proving the same type of properties in a model in-
dependent fashion and can do so exhaustively by using math-
ematical proofs at an appropriate level of abstraction, which
can be seen as symbolic. However, there are several differ-
ences with our approach. First, the authors’ proofs may re-
quire human assistance, depending on the used SAT solver.
Also, despite the fact that Büttner at al. do treat constraints
on object attributes, which we do not do, their results are
presented for a small (6 rule) transformation and no scala-
bility data, even preliminary, is presented. Finally, contrarily
to DSLTrans, ATL does not have explicit formal semantics
and because of that Büttner et al.’s axiomatization of ATL’s
semantics is tentative. More generally, while the authors’ ap-

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 37

proach requires an intermediate logic representation of the
transformation under analysis, our symbolic approach deals
directly with transformation rules. This feature can ease the
interpretation of analysis of results such as counterexamples
and could be in general less error-prone due to the absence
of an indirection layer which maps transformation concepts
to concepts in the chosen logic. It is interesting to notice that,
similarly to our approach, Büttner et al. have chosen expres-

siveness reduction as a means to work with subset of ATL
that is verifiable.

Assertional reasoning in graph transformations has been
studied by Habel and colleagues, who have introduced nested
conditions as properties of graphs in [41]. The authors for-
mally prove these nested conditions have the expressiveness
of first-order graph formulas. Poskitt and Plump later propose
in [42] a Hoare-style verification calculus which is anchored
on their experimental graph programming language GP. Us-
ing this calculus they then go on to prove nested condition
properties of a graph-colouring GP program. Our approach
shares some resemblances with assertional reasoning in that
we also propose a pre-condition/post-condition language and
a calculus for proving such properties in DSLTrans. We re-
mark however that the theoretical work in assertional reason-
ing described above is larger in scope than what we present
here and that assertional reasoning results require lifting to
more usable graph transformation languages than GP before
they can be used in practice.

Verification Technique Used A different possibility for our
work would have been to utilise the GROOVE tool, which
can specify, play, and analyse graph transformations [43]. In
particular, GROOVE assumes that the states of the systems
to be analysed are expressed as graphs and that the system’s
behaviour is simulated by graph transformation rules that ma-
nipulate those graphs.

In [44] Rensink, Schmidt and Varró test whether safety
and reachability properties that are expressed as constraints
over graphs can be efficiently checked by building the state
space for a transformation. The answer is positive, but the au-
thors found state space explosion problems as we did. In or-
der to tackle those issues the tool relies on exploiting the sym-
metric nature of a problem by investigating isomorphic situa-
tions only once. This is very similar to optimisations we have
made in our implementation of our approach by maintaining
caches throughout path condition construction and property
proof. Those caches allow us to avoid rerunning the expensive

subgraph isomorphism algorithm as much as possible. It is
foreseeable that our approach could make use of the advanced
state space construction and recent CTL property checking
capabilities of GROOVE. This could be achieved by using
GROOVE as the transformation framework for our approach
instead of T-CORE. However, at the time of the construction
of our tool, fine-grained control of GROOVE transformations
via an API as we do with T-CORE did not exist. It was thus
infeasible to implement our approach by relying solely on
GROOVE’s graphical interface.

Still in the context of GROOVE, several studies [45–47]
have been performed on abstractions that allow coping with
the state space explosion when performing model checking of
state-based systems modeled as graph transformations. The
authors present various abstractions on state graphs that al-
low reducing their size during model checking while allowing
equivalent (or approximate versions of) proofs of temporal
logic properties using the abstracted state graphs. Although
our technique is also based on abstraction, our main purpose
is not to execute concrete graphs in order to examine the state
they represent. We rather symbolically represent all transfor-
mation executions (resulting from the application of all rules
in a DSLTrans transformation to any input model) which are
in an abstraction relation with the path conditions, such that
we are able to symbolically examine the relations between all
of the transformation’s inputs and outputs.

Also from the verification technique viewpoint, Becker et

al. propose a technique for checking a dynamic system where
state is encoded as a graph [48]. They also use model trans-
formations to simulate the system’s progression and aim at
verifying that no unsafe states are reached as part of the sys-
tem’s behavior. In this sense Becker et al.’s approach is trans-

formation dependent and input independent, as an infinite
amount of initial graphs needs to be considered. However, in-
stead of generating the exhaustive state space as is done with
GROOVE, the authors follow a different strategy by check-
ing that no unsafe states of the system can be reached. They
do so by searching for unsafe states as counterexamples of
invariants encoded in the transformation rules. The analysis
is performed symbolically on the application transformation
rules and as such resembles our symbolic execution tech-
nique. However, rather than being generically applicable to
model transformations, possibly exogenous, the approach is
geared towards the mechatronic domain and graph transfor-
mations are used as a means to encode the dynamic structural

38 Levi LÚCIO et al.

adaptation of such systems. The applicability or efficiency of
Becker et al.’s technique when applied to the verification of
model syntax relations in model transformations remains to
be studied.

10 Conclusion

In this paper we have adapted symbolic execution techniques
to verify DSLTrans model transformations. As well, we have
presented an algorithm to prove model syntax relation prop-
erties by building all possible path conditions for a transfor-
mation.

The concrete contributions of our work are the following:

– An algorithm for constructing all path conditions repre-
senting all executions of a DSLTrans transformation.

– A property-checking algorithm that proves model syntax
relation properties over all path conditions, and therefore
over all transformation executions.

– Validity and completeness proofs for the path condition
construction and property proof algorithms.

– A discussion of optimisations and scalability concerns for
our methods, along with results from an industrial appli-
cation.

As is the case in general for exhaustive verification meth-
ods, we have encountered theoretical and practical limitations
when developing our technique. From a theoretical stand-
point, not all DSLTrans transformations are currently addressed
by the technique presented here. In particular, DSLTrans trans-
formation where rules overlap in the match part (as per Def-
inition 16 in Section 3) are not currently treated. Address-
ing overlapping rules theoretically implies some revisions to
the formalisation presented here: on the one hand, rules that
overlap imply rule dependency management during path con-
dition construction; on the other hand, the uniqueness lemma
in Lemma 1 of Section 5 needs to be re-analysed under looser
constraints. Note however that we have already addressed this
issue in practice in [5,18] and that we expect the impact in the
theory to be relatively small.

Another theoretical limitation has to do with the prop-
erties that can be proved using our technique. As expected,
the chosen abstraction relation we use imposes limitations
on which properties can be shown to hold or not hold on a
DSLTrans transformation. In particular, because in general
we only consider one rule copy in each path condition, we

cannot prove properties where the pattern in the property im-
plies the same rule matches on an input model more than
once. We do not see this as a too strong limitation of our tech-
nique given that: on the one hand we are able to prove, for all
executions of a DSLTrans transformation, a range of prop-
erties concerning the interaction between different rules in a
DSLTrans transformation, which is where we expect most er-
rors to occur; on the other hand we believe we can solve, at
least partially, this property expressiveness problem and we
have pointed some solutions to it in Section 6.3.

From a practical standpoint, we have shown with the two
examples presented in Section 8 that there are good indica-
tors that our technique can scale to transformations of practi-
cal interest. We have shown in Section 7 that the complexities
of path condition generation and property proving are, as ex-
pected, exponential. Still, we are confident that we have not
exhausted the set of possible optimizations in our tool and
that our implementation (using typed graph manipulations
in T-Core) can be made to scale well for reasonably-sized
model transformations. This remains to be proved for larger
model transformations. In this direction, we are currently im-
plementing the analysis of a UML-RT to Kiltera transforma-
tion [49] which includes more than twice the number of rules
in the industrial case study we present in this paper. For the
UML-RT to Kiltera case study we are also including element
attributes in the generation of path conditions and property
proof.

Additionally, we have recently completed a propositional
logic extension to our property language, which has already
been used to express and prove meaningful properties in our
industrial case study [5,18]. This extension has been imple-
mented in our tool, but its full impact in the theory of property
proving, as explained in Section 6, is yet to be fully under-
stood. A further topic of interest is that of negative DSLTrans
constructs, where elements and associations of given types
are prevented from being matched by a rule, and their inclu-
sion in the property language.

Acknowledgements

The authors would like to deeply thank Dániel Varró, Clark
Verbrugge and the anonymous reviewers for their detailed
and helpful comments. This work has been developed in the
context of the NECSIS project, funded by Automotive Part-
nership Canada.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 39

References

1. Sendall, S., Kozaczynski, W.: Model Transformation: The
Heart and Soul of Model-Driven Software Development. IEEE
Software 20 (September 2003) 42–45

2. Mens, T., Van Gorp, P.: A Taxonomy of Model Transforma-
tions. Electronic Notes in Theoretical Computer Science 152
(March 2006) 125–142

3. Amrani, M., Lúcio, L., Selim, G., Combemale, B., Dingel, J.,
Vangheluwe, H., Le Traon, Y., Cordy, J.: A Tridimensional Ap-
proach for Studying the Formal Verification of Model Transfor-
mations. In: ICST, IEEE (2012) 921–928

4. Lúcio, L., Barroca, B., Amaral, V.: A Technique for Automatic
Validation of Model Transformations. In: MoDELS, Springer
(2010) 136–150

5. Selim, G., Lúcio, L., Cordy, J.R., Dingel, J.: Symbolic Model
Transformation Property Prover for DSLTrans. Technical Re-
port 2013-616, Queen’s University (2013) http://research.
cs.queensu.ca/TechReports/Reports/2013-616.pdf.

6. Barroca, B., Lúcio, L., Amaral, V., Félix, R., Sousa, V.:
DSLTrans: A Turing Incomplete Transformation Language. In:
SLE, Springer (2010) 296–305

7. Félix, R., Barroca, B., Amaral, V., Sousa, V. Tech-
nical report, UNL-DI-1-2010, UNL, Portugal (2010)
http://solar.di.fct.unl.pt/twiki5/pub/Projects/
BATIC3S/ModelTransformationPapers/UML2Java.1.zip.

8. Gomes, C., Barroca, B., Amaral, A.: DSLTrans User
Manual http://msdl.cs.mcgill.ca/people/levi/files/
DSLTransManual.pdf.

9. Zhang, Q., Sousa, V.: Practical Model Transforma-
tion from Secured UML Statechart into Algebraic Petri
Net. Technical Report TR-LASSY-11-08, U. Luxembourg
(2011) http://msdl.cs.mcgill.ca/people/levi/files/
Statecharts2APN.pdf.

10. Akehurst, D., Kent, S.: A Relational Approach to Defining
Transformations in a Metamodel, Springer (2002) 243–258

11. Narayanan, A., Karsai, G.: Verifying Model Transformations
by Structural Correspondence. Electronic Communications of
the EASST 10 (2008)

12. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL Contracts
for the Verification of Model Transformations. ECEASST 24
(2009)

13. Guerra, E., De Lara, J., Wimmer, M., Kappel, G., Kusel, A.,
Retschitzegger, W., Schönböck, J., Schwinger, W.: Automated
Verification of Model Transformations based on Visual Con-
tracts. Automated Software Engineering 20(1) (2013) 5–46

14. Büttner, F., Egea, M., Cabot, J.: On Verifying ATL Trans-
formations Using ’off-the-shelf’ SMT Solvers. In: MoDELS,
Springer (2012) 432–448

15. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of
ATL Transformations Using Transformation Models and Model
Finders. In: ICFEM, Springer (2012) 198–213

16. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards Au-
tomated, Formal Verification of Model Transformations. In:
ICST, IEEE (2010) 15–24

17. Amrani, M., Dingel, J., Lambers, L., Lúcio, L., Salay, R., Selim,
G., Syriani, E., Wimmer, M.: Towards a Model Transformation
Intent Catalog. In: Proceedings of the First Workshop on Anal-
ysis of Model Transformations (AMT). (October 2012)

18. Selim, G.M.K., Lúcio, L., Cordy, J.R., Dingel, J., Oakes,
B.J.: Specification and Verification of Graph-Based Model
Transformation Properties. In: ICGT, Springer (2014)

113–129 http://msdl.cs.mcgill.ca/people/levi/30_
publications/files/paper_icgt_2014.pdf.

19. King, J.: Symbolic Execution and Program Testing. Communi-
cations of the ACM 19(7) (1976) 385–394

20. Syriani, E., Vangheluwe, H.: De-/Re-constructing Model Trans-
formation Languages. ECEASST 29 (2010)

21. Syriani, E., Vangheluwe, H., LaShomb, B.: T-core: a framework
for custom-built model transformation engines. Software and
Systems Modeling (2013) 1–29

22. Lúcio, L.: SyVOLT: A Prototype Implementation (2013) http:
//msdl.cs.mcgill.ca/people/levi/files/SyVOLT.zip.

23. Selim, G., Wang, S., Cordy, J.R., Dingel, J.: Model transfor-
mations for migrating legacy models: An industrial case study.
In: Proceedings of ECMFA 2012. Lecture Notes in Computer
Science, Springer (2012) 90–101

24. Taentzer, G.: AGG: A Tool Environment for Algebraic Graph
Transformation. In: AGTIVE. Volume 1779., Springer (2000)
333–341

25. De Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-
formalism and Meta-Modelling. In: FASE ’02, Springer-Verlag
(2002) 174–188

26. Varró, D., Pataricza, A.: Generic and Meta-transformations for
Model Transformation Engineering. In: UML, Springer (2004)
290–304

27. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A
Model Transformation Tool. Science of Computer Program-
ming 72(12) (2008) 31 – 39

28. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A Sys-
tematic Approach to Metamodeling Environments and Model
Transformation Systems in VMTS. Electronic Notes in Theo-
retical Computer Science 127(1) (2005) 65–75

29. Plump, D.: Termination of Graph Rewriting is Undecidable.
Fundamentae Informatica 33(2) (1998) 201–209

30. De Lara, J., Vangheluwe, H.: Automating the Transformation-
based Analysis of Visual Languages. Formal Aspects of Com-
puting 22(3-4) (May 2010) 297–326

31. Ehrig, H.K., Taentzer, G., De Lara, J., Varró, D., Varró-Gyapai,
S.: Termination Criteria for Model Transformation. In: Trans-
formation Techniques in Software Engineering, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany (2005)

32. Varró, D., Varró-Gyapai, S., Ehrig, H., Prange, U., Taentzer, G.:
Termination Analysis of Model Transformations by Petri Nets.
In: ICGT. Volume 4178., Springer (2006) 260–274

33. Bruggink, H.J.S.: Towards a Systematic Method for Prov-
ing Termination of Graph Transformation Systems. Electronic
Notes in Theoretical Computer Science 213(1) (2008)

34. Küster, J.M.: Definition and Validation of Model Transforma-
tions. SoSyM 5(3) (2006) 233–259

35. Plump, D.: Confluence of Graph Transformation Revisited. In:
Processes, Terms and Cycles: Steps on the Road to Infinity,
Springer (2005)

36. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed
Attributed Graph Transformation Systems. In: ICGT, Springer
(2002)

37. Lambers, L., Ehrig, H., Orejas, F.: Efficient Detection of Con-
flicts in Graph-based Model Transformation. Electronic Notes
in Computer Science 152 (2006)

38. Biermann, E.: Local Confluence Analysis of Consistent EMF

Transformations. ECEASST 38 (2011) 68–84
39. Guerra, E., Soeken, M.: Specification-driven Model Transfor-

mation Testing. Software & Systems Modeling (2013) 1–22

40 Levi LÚCIO et al.

40. González, C.A., Cabot, J.: Atltest: a white-box test generation
approach for atl transformations. In: Model Driven Engineering
Languages and Systems. Springer (2012) 449–464

41. Habel, A., Pennemann, K.h.: Correctness of high-level trans-
formation systems relative to nested conditions. Mathematical.
Structures in Comp. Sci. 19(2) (April 2009) 245–296

42. Poskitt, C.M., Plump, D.: Hoare-style verification of graph pro-
grams. Fundam. Inform. 118(1-2) (2012) 135–175

43. Ghamarian, A., Mol, M., Rensink, A., Zambon, E., Zimakova,
M.: Modelling and Analysis using GROOVE. Interna-
tional Journal on Software Tools for Technology Transfer 14(1)
(2012) 15–40

44. Rensink, A., Schmidt, A., Varró, D.: Model Checking Graph
Transformations: A Comparison of Two Approaches. In: ICGT,
Springer (2004) 226–241

45. Rensink, A., Distefano, D.: Abstract graph transformation.
Electr. Notes Theor. Comput. Sci. 157(1) (2006) 39–59

46. Bauer, J., Boneva, I., Kurbán, M.E., Rensink, A.: A modal-logic
based graph abstraction. In: ICGT. Volume 5214 of Lecture
Notes in Computer Science., Springer (2008) 321–335

47. Rensink, A., Zambon, E.: Pattern-based graph abstraction. Vol-
ume 7562 of Lecture Notes in Computer Science., Springer
(2012) 66–80

48. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Sym-
bolic Invariant Verification for Systems with Dynamic Struc-
tural Adaptation. In: ICSE, ACM (2006) 72–81

49. Posse, E.: Mapping UML-RT State Machines to Kiltera. Tech-
nical Report 2010-569, Queen’s University, Kingston, Ontario,
Canada (2010)

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 41

A Formal Background

We will start by introducing the notion of typed graph. A
typed graph is the essential object we will use throughout our
mathematical development. Typed graphs will be used to for-
malise all the important graph-like structures we will present
in this paper. A typed graph is a directed multigraph (a graph
allowing multiple edges between two vertices) where vertices
and edges are typed.

Definition A.1 Typed Graph

A typed graph is a 6-tuple 〈V,E,(s, t),τ,V T,ET 〉 where: V is

a finite set of vertices; E is a finite set of directed edges con-

necting the vertices V ; (s, t) is a pair of functions s : E → V

and t : E → V that respectively provide the source and tar-

get vertices for each edge in the graph; function τ : V ∪E →
V T ∪ET is a typing function for the elements of V and E,

where V T and ET are disjoint finite sets of vertex and edge

type identifiers and τ(v)∈V T if v∈V and τ(e)∈ET if e∈E.

Edges e∈ E are noted v e−→ v′ if s(e) = v and t(e) = v′, or sim-

ply e if the context is unambiguous. The set of all typed graphs

is called TG.

We now define how two typed graphs are united. A union
of two typed graphs is trivially the set union of all the compo-
nents of those two typed graphs. Note that we do not require
the components of the two graphs to be disjoint, as in the
following joint unions will be used to merge typed graphs.

Definition A.2 Typed Graph Union

Let 〈V,E,(s, t),τ,V T,ET 〉,〈V ′,E ′,(s′, t ′),τ′,V T ′,ET ′〉 ∈ TG

be typed graphs, where V T and ET ′ are disjoint sets, as well

as V T ′ and ET . The typed graph union is the function t :
TG×TG→ TG defined as:

〈
V,E,(s, t),τ,V T,ET

〉
t

〈
V ′,E ′,(s′, t ′),τ′,V T ′,ET ′

〉
=〈

V ∪V ′,E ∪E ′,(s∪ s′, t ∪ t ′),τ∪ τ
′,V T ∪V T ′,ET ∪ET ′

〉
For the formal development of our technique, we are in-

terested in relations between typed graphs that are structure-
preserving, i.e. homomorphisms. Homomorphisms between
typed graphs preserve not only structure, but also the types of
vertices and edges that are mapped.

Definition A.3 Typed Graph Homomorphism

Let 〈V,E,st,τ,V T,ET 〉 = g and 〈V ′,E ′,st ′,τ′,V T ′,ET ′〉 =
g′ ∈ TG be typed graphs. A typed graph homomorphism be-

tween g and g′ is a function f : V → V ′ such that for all

v1
e−→ v2 ∈ E we have that f (v1)

e′−→ f (v2)∈ E ′, where τ(v1) =

τ′(f (v1)), τ(v2) = τ′(f (v2)) and also τ(e) = τ(e′). The do-

main of f is noted Dom(f) and the co-domain of f is noted

CoDom(f). When an injective typed graph homomorphism

f exists between g and g′ we write g
f
C g′, or simply g C g′

when the context is unambiguous. When a surjective typed

graph homomorphism f exists between typed graphs g and

g′ we write g
f
J g′, or also simply g J g′ in an unambiguous

context.

Note that, trivially, a typed graph homomorphism is a
graph homomorphism.

We now define the useful notion of typed subgraph. As
expected, a typed subgraph is simply a restriction of a typed
graph to some of its vertices and edges.

Definition A.4 Typed Subgraph

Let 〈V,E,st,τ,V T,ET 〉= g,〈V ′,E ′,st,τ′,V T ′,ET ′〉= g′ ∈ TG

be typed graphs. g′ is a typed subgraph of g, written g′ v g,

iff V ′ ⊆V , E ′ ⊆ E and τ′ = τ|V ′∪E ′ .

Two typed graphs are said to be isomorphic if they have
exactly the same shape and related vertices and edges have
the same type.

Definition A.5 Typed Graph Isomorphism

Let 〈V,E,st,τ,V T,ET 〉 = g,〈V ′,E ′,st ′,τ′,V T ′,ET ′〉 = g′ ∈
TG be typed graphs. We say that g and g′ are isomorphic,

written g ∼= g′, if and only if there exists a bijective typed

graph homomorphism f : V → V ′ such that f−1 : V ′→ V is

a typed graph homomorphism.

Notation: In order to simplify our notation, when the con-
text is unambiguous we will abbreviate a typed graph 〈V,E,st,
τ,V T,ET 〉 as as 4-tuple 〈V,E,st,τ〉. Also, given a typed graph
g ∈ TG, will use the notation Components(g) to describe the
set of strongly connected typed graphs in g. Finally, we will
use the notation g|t to refer to the restriction of graph g to its
subgraph containing only edges of type t.

42 Levi LÚCIO et al.

B Formal Syntax and Semantics of DSLTrans

In this section we will formally introduce the syntax and the
semantics of the DSLTrans language. The theory is based on
the notion of typed graphs as described in Section 3.

We will start by introducing the notion of metamodel,
which in DSLTrans is used to type the input and output mod-
els of a DSLTrans transformation.

Definition B.1 Metamodel

A metamodel is a 5-tuple 〈V,E,st,τ,≤〉where 〈V,E,st,τ〉 ∈
TG is a typed graph, (V,≤) is a partial order and τ is a bijec-

tive typing function. Additionally we also have that: if v ∈ V

then τ(v)∈V T ×{abstract,concrete}, where V T is the set of

vertex type names; if e ∈ E then τ(e) ∈ ET ×{containment,

re f erence}, where ET is a set of edge type names. The set of

all metamodels is called META.

A formal metamodel is a particular kind of typed graph
where vertices represent classes and edges represent relations
between those classes. A typed graph representing a meta-
model has two special characteristics: on the one hand, the
typing function for vertices and edges is bijective. This means
that each type occurs only once in the metamodel, as is to be
expected. On the other hand, a metamodel is equipped with
a partial order between vertices. This partial order is used to
model specialization at the level of the metamodel’s classes.
Note that here we have overridden the co-domain of the typ-
ing function in the original typed graph presented in Defi-
nition A.1 in order to allow distinguishing between abstract

and concrete classes, as well as between containment and ref-

erence edges in our metamodels. For simplification purposes,
we do not model association cardinalities in our formal no-
tion of metamodel as cardinalities are not strictly necessary
in our development.

Definition B.2 Expanded Metamodel

Let mm= 〈V,E,st,τ,≤〉∈META be a metamodel. The ex-

pansion of mm, noted mm?, is a typed graph 〈V ′,E ′,st ′,τ′〉 ∈
TG built as follows:

– V ′ =V \{v ∈V |τ(v) = (·4,abstract)};
– v1

e−→ v2 ∈ E ′ if v1
e−→ v2 ∈ E and τ(v1) = (·,concrete) and

τ(v2) = (·,concrete);

– if v1
e−→ v2 ∈ E we have that v′1

e′−→ v′2 ∈ E ′, where v′1 ≤ v1,

v′2 ≤ v2 and τ′(e′) = τ(e);

4 In our mathematical development we use a ‘dot’ notation to rep-
resent that we do not care about the value of a particular variable in
a given context.

– for all v ∈ V ′ and e ∈ E ′ we have that τ′(v) = τ(v) and

that τ′(e) = τ(e).

An expanded metamodel is an auxiliary construct where
all the relations between types of a metamodel are made ex-
plicit, rather than remaining implicit in the specialization hi-
erarchy. It is built by adding to the original metamodel typed
graph a relation of type t between two classes of the meta-
model, whenever those classes specialize two classes that are
also related by a relation of type t. Abstract classes and their
relations do not carry over to the expanded metamodel. Ex-
panded metamodels will be used in the subsequent text to fa-
cilitate formal the treatment of any structure involving poly-
morphism.

Definition B.3 Metamodel Instance

An instance of a metamodel mm= 〈V ′,E ′,st ′,τ′,≤〉∈META

is a typed graph 〈V,E,st,τ〉 ∈ TG, where the co-domain of τ

equals the co-domain of τ′. Also, there is a typed graph homo-

morphism f : V →V ′ from 〈V,E,st,τ〉 to the expanded meta-

model mm? and the graph
〈
V,{e∈E |τ(e)= (·,containment)}

〉
is acyclic. The set of all instances for a metamodel mm is

called INSTANCEmm.

A metamodel instance is a useful intermediate formal no-
tion that lies between metamodel and model. The injective
typed graph homomorphism between a metamodel instance
and metamodel models multiple “instances” of objects and
relations being typed by one single class or relation of the
metamodel. Metamodel instances do not allow cyclic con-
tainment relations, as enforced by EMF.

Definition B.4 Containment Transitive Closure

The containment transitive closure of a metamodel in-

stance 〈V ′,E ′,st ′,τ′〉 ∈ INSTANCEmm is a typed graph 〈V,E,st,τ〉
where we have that V = V ′, τ′ ⊇ τ and τ’s co-domain is the

union of the co-domain of τ′ and the set {indirect}. We also

have that E ′ =E∪E∗c where E∗c is the transitive closure of the

set
{

v e−→ v′ |τ(v e−→ v′) = (·,containment)
}

and if e ∈ E \E ′

then τ(e) = indirect. We denote mi∗ the containment closure

of a metamodel instance mi ∈ INSTANCEmm.

Given a metamodel instance, its containment transitive
closure includes, besides the original graph, all the edges be-
longing to the transitive closure of containment links in that
metamodel instance. The transitive edges are typed as indi-

rect. In the definitions that follow we will use the ∗ nota-
tion, as in Definition B.4, to denote the containment transi-
tive closure of structures that directly or indirectly include

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 43

metamodel instances. For example, tg∗ would represent the
containment transitive closure of typed graph tg wherever
containment edges are found in the graph. Note that the ∗
notation is different from the ? notation, introduced in Defi-
nition B.2 for an expanded metamodel.

Definition B.5 Model

A model of a metamodel mm = 〈V ′,E ′,st ′,τ′,≤〉 ∈META

is a metamodel instance 〈V,E,st,τ〉 ∈ INSTANCEmm, such that:

there exists an injective typed graph homomorphism f : V →
V ′ from 〈V,E,st,τ〉 to metamodel mm? where, if there exists

an edge f (a) e′−→ b ∈ E ′ where τ(e′) = (·,containment), then

we also have that f (b) e−→ c ∈ E and that f (c) = b. The set of

all models for a metamodel mm is called MODELmm.

A model, as per Definition B.5, is a metamodel instance
where all the containment relations are respected. This means
that if an object having a containment relation exists in the
model, then the model will also contain an instance of that
containment relation together with a contained object. Note
that this constraint does not necessarily lead to infinite mod-
els in the case of containment relations with the same source
and target classes. In fact, if the cardinality of the target class
is allowed to be zero, then it is not necessary that the contain-
ment relation is instantiated. This is for example the case of
the containment relation supervise in the metamodel of Fig-
ure 1a.

Definition B.6 Input-Output Model

An input-output model is a 6-tuple
〈
V,E,(s, t),τ, Input,

Out put
〉
, where: Input = 〈V ′,E ′,st ′,τ′〉 ∈ INSTANCEsr is a

model; Out put = 〈V ′′,E ′′,st ′′,τ′′〉 ∈ INSTANCEtg is a meta-

model instance; Input and Out put are disjoint. Additionally

we have that V =V ′∪V ′′, E ⊆ E ′∪E ′′ and τ⊆ τ′∪τ′′, where

the co-domain of τ is the union of the co-domains of τ′ and

τ′′ and the set {trace}. An edge e ∈ E \E ′ ∪E ′′ is called a

traceability link and is such that s(e) ∈ V ′′, t(e) ∈ V ′ and

τ(e) = trace. The set of all match-apply patterns for a source

metamodel sr and a target metamodel tg is called IOMsr
tg.

An input-output model is an object we will use when
defining the semantics of a DSLTrans model transformation
in Section 3.2. It is composed of two metamodel instances,
one called the input and the other one the output. An input-
output model allows the representation of intermediate oper-
ational states during the execution of a model transformation.
It may include a particular type of edges called traceability

links, for keeping a history of which elements in the output
model originated from which elements in the input model.

Definition B.7 Metamodel Pattern and Indirect Metamodel

Pattern A pattern of a metamodel mm ∈META is an instance

of mm. Given a metamodel pattern 〈V ′,E ′,st ′,τ′〉 ∈ INSTANCEmm

we have that 〈V,E,st,τ〉 is an indirect pattern if V =V ′, E ′ ⊇
E and the co-domain of τ is the union of the co-domains of τ′

and the set {indirect}. Also, if e ∈ E \E ′, then we have that

τ(e) = indirect. Given a metamodel mm, the set of all meta-

model patterns for mm is called PATTERNmm. The set of all

indirect metamodel patterns for mm is called IPATTERNmm.

Metamodel patterns are introduced in Definition B.7 as an
intermediate notion, formally equal to metamodel instances.
An indirect metamodel pattern is a metamodel pattern that in-
cludes edges typed as indirect. Both structures will be used as
building blocks in the construction of transformation-related
structures in the upcoming text.

Definition B.8 Transformation Rule

A transformation rule is a 6-tuple
〈
V,E,(s, t),τ,Match,

Apply
〉
, where: Match = 〈V ′,E ′,st ′,τ′〉 ∈ IPATTERNsr such

that: Match 6= ε5 is an non-empty indirect metamodel pat-

tern; Apply= 〈V ′′,E ′′,st ′′,τ′′〉 ∈ PATTERNtg such that Apply 6=
ε is a metamodel pattern; Match and Apply are disjoint. We

also have that V = V ′ ∪V ′′, E ⊆ E ′ ∪ E ′′ and τ ⊆ τ′ ∪ τ′′,

where the co-domain of τ is the union of the co-domains of τ′

and τ′′ and the set {trace}. An edge e ∈ E \E ′∪E ′′ is called

a backward link and is such that s(e) ∈ V ′′, t(e) ∈ V ′ and

τ(e) = trace. We additionally impose that there always exists

a v1 ∈ V ′′ in the Apply part of the rule such that @e .v1
e−→ v2

and τ(e) = trace, or that E ′′ is not empty. The set of all trans-

formation rules for a source metamodel sr and a target meta-

model tg is called RULEsr
tg.

A transformation rule is the elemental block of a model
transformation. Several transformation rules can be observed
in the Police Station transformation in Figure 2. A formal
transformation rule includes a non-empty match pattern and
a non-empty apply pattern (also known in the model trans-
formation literature as a rule’s left hand side and right hand

side). The apply pattern of a rule always contains at least one
apply element that is not connected to a backward link or
an edge, meaning in practice that a rule will always produce

5 We use the simplified ε notation to denote empty n-tuples struc-
tures.

44 Levi LÚCIO et al.

something and not only match. A match pattern can include
indirect links that are used to transitively match containment
relations in a model. An apply pattern does not include indi-
rect links as it is used only for the construction of parts of in-
stances of a metamodel. A transformation rule includes back-
ward links, as informally introduced in Section 2.2. Back-
ward links are formally typed as trace.

Definition B.9 Matcher of a Transformation Rule

Let rl =
〈
V,E,st,τ,Match,Apply

〉
be a transformation

rule where Match = 〈Vm,Em,stm,τm〉. We define rl’s matcher,

noted ‖rl‖, as the transformation rule
〈
V ′,E ′,st ′,τ′,Match,

Apply′
〉
v rl where v1

e−→ v2 ∈ E ′ if and only if v1,v2 ∈Match

or τ(e) = trace and V ′ = Vm ∪
{

v1 |v1
e−→ v2 ∈ E ∧ τ(e) =

trace
}

.

Definition B.9 introduces the notion of matcher for a trans-
formation rule which consists solely of the match pattern of a
rule and its backward links, if any. The matcher of a rule con-
stitutes the complete pattern that a DSLTrans rule attempts
to match over a input-output model during rule execution.
Traceability links between input and output model elements
generated during transformation execution are matched by
transformation rules’ backward links, as informally explained
in Section 2.2.

Definition B.10 Expanded Transformation Rule

Let rl =
〈
V,E,st,τ,Match,Apply〉 ∈ RULEsr

tg be a trans-

formation rule where Match = 〈V ′,E ′,st ′,τ′〉 and also we

have that sr = 〈V ′′,E ′′,st ′′,τ′′,≤〉. The expansion of rl, noted

rl? is a set of transformation rules built as follows:

– rl ∈ rl?;

–
〈
V,E,st,τ′,Match,Apply〉 ∈ rl? iff for all v ∈V ′ we have

that τ′(v)≤ τ(v).

The expansion of a transformation rule is a set of transforma-
tion rules. Each rule in that set includes a possible replace-
ment of each of the classes in the match part of the original
rule by one of its subtypes. Expanded transformation rules
will be important such that polymorphism is correctly han-
dled in the developments that follow.

Definition B.11 Layer, Transformation

A layer is a finite set of transformation rules l ⊆ RULEsr
tg.

The set of all layers for a source metamodel sr and a tar-

get metamodel tg is called LAYERsr
tg. A model transforma-

tion is a finite list of layers denoted [l1 :: l2 :: . . . :: ln] where

lk ∈ LAYERsr
tg and 1 ≤ k ≤ n, n ∈ N. We also impose that

for any pair of rules rl1,rl2 ∈
⋃

1≤k≤n lk, if ‖rl1‖ ∼= rl and

rl v ‖rl2‖ then rl2 appears in a layer later than rl1 and the

apply parts of rl1 and rl2 are not isomorphic. The set of all

transformations for a source metamodel s and a target meta-

model t is called TRANSFsr
tr .

Definition B.11 formalises the abstract syntax of a model
transformation, introduced at the beginning of this section.
An example of a model transformation can be observed in
Figure 2, the Police Station transformation. As expected, a
formal DSLTrans transformation is composed of a sequence
of layers where each layer is composed of a set of rules. The
last condition of Definition B.11 imposes that, for any two
pair of rules in the transformation, the matcher of the sec-
ond rule never partially or totally subsumes (or contains) the
matcher of the first rule, unless the second rule is in a subse-
quent layer and produces something more than the first rule.
This condition avoids situations where the execution of a rule
in a DSLTrans model transformation necessarily implies the
execution of another rule (except for when rules having back-
ward links necessarily execute because all their dependencies
were created during the execution of previous layers).

B.0.1 Notation: We naturally extend to input-output mod-
els (Definition B.6), transformation rules (Definition B.8) and
transformation executions (Definition B.16) the typed graph
operations introduced in Section 3. Also, given a structure
such as transformation rule rl = 〈V,E,st,τ,Match,Apply〉,
we will refer to the structure’s components by using the com-
ponent’s name followed by the variable that holds the struc-
ture in between parenthesis. For example, we will write V (rl)

to designate the V component of rl or Apply(rl) to designate
rl’s Apply component. We also use a simplified notation to
refer to the components of the input/output or match/apply
typed graphs of input-output models and transformation rules.
We refer to these structures’ vertices that belong to the match
part of the graph as Match(V), its edges as Match(E) and so
on for pair st and function τ. In a similar fashion we use the
notation Apply(V), Apply(E), etc. to refer to the transforma-
tion rule’s components that belong to the apply part of the
graph.

B.0.2 Transformation Language Semantics We will now ad-
dress the semantics of the DSLTrans language. We will start
by defining a match function that, given an input-output model
and a transformation rule, returns all subgraphs of that input-

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 45

output model where the rule’s match pattern (including back-
ward links) is found.

Definition B.12 Match Function

Let min ∈ IOMsr
tr be a input-output model and rl ∈ RULEsr

tg

be a transformation rule. The match : IOMsr
tg × RULEsr

tg →
P (IOMsr

tg) function is defined as follows:

matchrl(min) =
{

gluenoind | gluev m∗in∧glue∼= ‖rl‖
}

where glue∈ IOMsr
tr is an input-output model and gluenoind

is a version of glue where the indirect links have been re-

moved.

The match function in Definition B.12 looks for subgraphs
(gluev m∗in) of an input-output model that are isomorphic to
the backward matcher of the given transformation rule (glue∼=
‖rl‖). Note that the containment transitive closure of the input-
output model (m∗in) is considered such that indirect links in
the rule can looked for in the input model. Additionally, indi-
rect links need to be removed from the input-output models
resulting from the match function (gluenoind). This is so be-
cause indirect links are not part of the original input model,
but rather an auxiliary structure.

Let us now turn our attention to the apply function in Def-
inition B.13. Its role is extend all model fragments found by
matching a rule on a given input-output model, such that each
of those fragments becomes isomorphic to the complete rule
(minus its backward links). This process effectively creates
the new objects and relations specified in the apply part of
the rule, for each of the fragments found when matching the
rule.

Definition B.13 Apply Function

Let mglue ∈ IOMsr
tg be a input-output model and rl ∈RULEsr

tg

a transformation rule. The apply : IOMsr
tg×RULEsr

tg→ IOMsr
tg

function is defined as follows:

applyrl(min) =
⊔

mglue∈matchrl(min)

tracea∆
(mglueta∆)

where a∆ ∈ IOMsr
tg is such that mglueta∆

∼= rlnoind .

We impose that any instance of a∆ is always disjoint from

the min input-output model and also that any two instances of

a∆ used in the large union are always disjoint.

Partial function trace : IOM× IOM 9 IOM is such that

trace〈V∆,E∆,st∆,τ∆〉(〈V,E,st,τ〉) = 〈V,E
′,st ′,τ′〉 where we have

that E ⊆ E ′, st ⊆ st ′ (using a light notational abuse for the

s ⊆ s′ and t ⊆ t ′), τ ⊆ τ′ and if v1
e−→ v2 ∈ E ′ \E then v1 ∈

Out put(V∆), v2 ∈ Input(V) and τ′(e) = trace. Finally, rlnoind

is a version of rl where indirect links have been removed.

In Definition B.13 a∆ is an input-output model that con-
tains an instance of the target metamodel. These instances
are created by rule rl and are used to extend the sub-models
found by the match function. The trace function builds trace-
ability edges between newly created vertices of the output
model in a∆ and all the vertices from the input part of a model
fragment found by the match function.

Note that, because we do not pose any constraints on a∆

other than the fact that its union with the sub-model m is iso-
morphic to rlnoind , the a∆ variable can always be satisfied by
an unlimited amount of input-output models. In order to avoid
an infinite amounts of results when a transformation rule is
executed, in what follows we will consider transformation re-
sults differ only up to typed graph isomorphism.

Definitions B.12 and B.13 are complementary: the for-
mer gathers all the fragments of an input-output model that
are matched by a transformation rule; the latter glues on the
output part of each of those fragments new objects and rela-
tions created by a transformation rule.

Definition B.14 Layer Step Semantics

Let l ∈ LAYERsr
tg be a Layer. The layer step relation

layerstep→ ⊆
IOMsr

tg× IOMsr
tg×LAYERsr

tg× IOMsr
tg is defined as follows:

〈min,mglue, /0〉 layerstep−−−−−→ mintmglue

rl ∈ l, applyrl (min) = mrout ,

〈min,mgluetmrout , l\{rl}〉 layerstep−−−−−→ mout

〈min,mglue, l〉
layerstep−−−−−→ mout

where mrout ∈ IOMsr
tg and rl ∈ RULEsr

tg.

We impose that all input-output models that are part of

rout and have been generated by rule rl are disjoint from

input-output models accumulated in mglue that have been gen-

erated by other rules.

In Definition B.14 we build the result of executing a layer
of a DSLTrans transformation. The operational semantics-
like rules in the definition execute each rule rl in layer l, in
a non-deterministic order, by using the apply function. The
result of executing each rule is accumulated in the temporary

46 Levi LÚCIO et al.

mglue input-output model. Finally, when the set of transfor-
mation rules in the layer has been exhausted, the result of
executing all the rules in the layer (now contained in mglue)
is united with the input-output model min, the input to layer
l. Note that this final union produces the result we expect be-
cause of the fact that the mglue input-output model is not dis-
joint from min. The common “glue” parts of mglue that have
been built by the match function and extended by the apply
function are now used to built the result of executing layer l.

Definition B.14 is the core of DSLTrans’ semantics. Many
model transformation languages are based on graph rewrit-
ing, where the result of each rule rewrite is immediately us-
able by all other rules. In DSLTrans the result of executing
one layer in DSLTrans is totally produced before the input
to the layer is changed. This is enforced in Definition B.14
by the fact that the apply function always executes over the
same min input-output model and all the results of rule execu-
tion in the same layer are added to the mglue structure that is
write-only. Rules belonging to the same layer are thus forced
to execute independently.

Definition B.15 Transformation Step Semantics

Let [l :: tr] ∈ TRANSFsr
tg be a transformation, where l ∈

LAYERsr
tg is a Layer and tr also a transformation. The trans-

formation step relation
trstep→ ⊆ IOMsr

tg×TRANSFsr
tg× IOMsr

tg is

defined as follows:

〈m, []〉 trstep−−−→ m

〈
min,ε, l?

〉 layerstep−−−−−→ minter, 〈minter,R〉
trstep−−−→ mout

〈min, [l :: T]〉 trstep−−−→ mout

where l? =
⋃
rl∈l

rl?

While the execution of the rules belonging to a layer hap-
pens in parallel, the execution of the layers of a transforma-
tion happens sequentially. As per Definition B.15, the input-
output model minter is the output of executing a given layer
that is passed onto the next layer as input. Note that an empty
input-output model (ε) is passed as the second argument to
the layerstep relation in Definition B.15. This is because in
Definition B.14 of layer step semantics, the second argument
of the relation is used as an accumulator for the model frag-
ments that are added to be added to the output of the pre-
vious layer once all the rules in the current layer have been

executed. The transformation rules in a layer are expanded
before execution (l?) such that polymorphism in the match
elements can be handled (see Definition B.10).

Definition B.16 Model Transformation Execution

Let tr∈ TRANSFsr
tg be a transformation and input ∈MODELsr

be a model. Assume we also have that:

〈V,E,st,τ, input,ε〉, tr trstep−−−→ 〈V ′,E ′,st ′,τ′, input,out put〉

A model transformation execution is the input-output model

〈V ′,E ′,st ′,τ′, input,out put〉 ∈ IOMsr
tg, where out put ∈ INSTANCEtg

is an instance of the output metamodel. The set of all model

transformation executions for transformation tr is written EXEC(tr).

A model transformation with an empty input model is noted

εex.

Finally, as stated in Definition B.16, we consider a model
transformation execution to be the input-output model (IOM)
resulting from executing a set of rules on a starting IOM. This
starting IOM includes the transformation’s input in its input
part and has an empty output part. The starting IOM repre-
sents the first step of the transformation when no rule has
been executed yet. A transformation execution results from
executing all the rules in a DSLTrans model transformation.

We now prove two important properties about executions
of transformations expressed in the subset of DSLTrans pre-
sented in this paper: confluence and termination. The proofs
are provided at a high level, given the fact that DSLTrans es-
sentially enforces both these properties by construction of the
semantics of DSLTrans.

Proposition 5 Confluence

Every model transformation execution is confluent up to

typed graph isomorphism.

Proof. We want to prove that for every model transformation
execution of a transformation tr ∈ TRANSFsr

tg having as input
a model input ∈MODELs, its output is always the same up
to typed graph isomorphism.
If we assume an execution of the transformation is not con-
fluent then this should happen because of non-determinism
when the execution of a transformation is being built. Non-
determinism happens during the construction of a transfor-
mation execution at two points:

1. in definition B.13, a∆ is non-deterministic up to typed
graph isomorphism, which does not contradict the propo-
sition we are trying to prove.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 47

2. in definition B.14 transformation rule rl is chosen non-
deterministically from layer l. Thus, the order in which
the transformation rules are treated is non-deterministic.
However, by Definition B.14 rules in a layer execute in-
dependently, which means no-side effects from rule or-
dering influence the execution of rules in the same layer.
Also, the increments to the transformation by each rule
of a layer in Definition B.14 are united using t (see Def-
inition A.2), which is an operation that is commutative
by construction and thus renders the transformation result
from each layer deterministic.

Given there are no other sources of non-determinism when
building the execution of a transformation, every model trans-
formation execution is confluent up to typed graph isomor-
phism.

Proposition 6 Termination

Every model transformation execution terminates.

Proof. Let us assume that there is a transformation execution
which does not terminate. In order for this to happen there
must exist a part in the construction of the execution of a
transformation which induces an algorithm with an infinite
amount of steps. We identify three moments when this can
happen:

1. if definition B.14 of execution of a layer induces an infi-
nite amount of steps. The only possibility for this to hap-
pen is if a layer has an infinite amount of transformation
rules, which is a contradiction with definition B.11.

2. if definition B.15 of execution of a transformation induces
an infinite amount of steps. Given layers are executed se-
quentially and no looping is allowed, the only possibility
for this to happen is if the transformation has an infinite
amount of layers, which contradicts definition B.11.

3. if the result of the matchrl(min) function in definition B.12
is an infinite set of match-apply graphs. The input-output
model min is by definition finite and the matching of each
rule is independent from the execution of other rules in
the same layer. As such, the number of subgraphs of min

isomorphic to rl’s matcher found during the execution of
rl is finite.

Given there are no other constructs in the semantics of a trans-
formation that can induce an infinite amount of steps, every
model transformation execution terminates.

48 Levi LÚCIO et al.

C Validity and Completeness of Path Condition
Generation

Definition C.1 Path Condition

A path condition is a 7-tuple
〈
V,E,(s, t),τ,Match,Apply,

Rulecop
〉
, where: Match = 〈V ′,E ′,st ′,τ′〉 ∈ IPATTERNsr is

an indirect pattern; Apply = 〈V ′′,E ′′,st ′′,τ′′〉 ∈ PATTERNtg

is a pattern; Match and Apply are disjoint graphs. We also

have that V =V ′∪V ′′, E ⊆ E ′∪E ′′ and τ⊆ τ′∪τ′′ where the

co-domain of τ is the union of the co-domains of τ′ and τ′′

and the set {trace}. An edge e ∈ E \E ′ ∪E ′′, called a sym-
bolic traceability link, is such that s(e) ∈ V ′′ and t(e) ∈ V ′

and τ(e) = trace. Finally, the Rulecop component in the 7-

tuple contains the set of rule copies used in the construc-

tion of the path condition, where each rule copy is a sub-

graph of
〈
V,E,(s, t),τ

〉
. The set of all path conditions for

a source metamodel sr and a target metamodel tg is called

PATHCONDsr
tg and the empty path condition is noted εpc.

Similarly to a transformation rule (see Definition B.8), a
path condition is also a typed graph with a match and an apply
part. As mentioned before, a path condition contains a com-
bination of rules where symbolic traceability links represent
the concrete traceability links of a transformation execution
(see Definition B.16). The path condition structure also con-
tains a Rulcop set that allows identifying individually all the
copies of rules that were used when building the path condi-
tion’s typed graph. Note that we refer to copies of rules as,
despite the fact that a path condition normally only contains
one copy of each rule, in certain situations a rule may be used
multiple times in the construction of a path condition. This
will be explained further ahead in this section.

Notation: Given a path condition pc =
〈
V,E,st,τ,

Match,Apply,Rule
〉
∈ PATHCONDsr

tg we refer to the set of
transformation rules in pc identified by the Rule relation as
Rule(pc). Also, because a path condition is particular kind of
a typed graph, we naturally extend the basic notation of op-
erators and homomorphisms on typed graphs defined in Sec-
tion 3 to path conditions.

Definition C.2 Combination of a Path Condition with a Rule

Let pc = 〈V ′,E ′,st ′,τ′,Match′,Apply′,Rulecop′〉 ∈
PATHCONDsr

tg be a path condition and rl = 〈V ′′,E ′′,st ′′,τ′′,
Match′′,Apply′′〉 ∈ RULEsr

tg be a transformation rule, where

their respective typed graphs can be joint. The union of pc

with rl is built using the operator
trace
t : PATHCONDsr

tg×RULEsr
tg→

PATHCONDsr
tg, as follows:

pc
trace
t rl = 〈V,E,st,τ,Match,Apply,Rulecop〉

where we have that V = V ′∪V ′′, E ′∪E ′′ ⊆ E, st ′∪ st ′′ ⊆ st,

τ′∪τ′′ ⊆ τ and if v1
e−→ v2 ∈ E \E ′∪E ′′ then we have that v1 ∈

Apply(V ′′), v1 /∈ Apply(V ′), v2 ∈ Match(V ′′) and also that

τ′(e) = trace. Additionally, Match = Match′ tMatch′′ and

Apply = Apply′tApply′′. Finally, we have that: Rulecop =

Rulecop′∪ rl.

Definition C.2 shows the formal definition of combining
a path condition with a rule. When a path condition is com-
bined with a rule their typed graphs are united. Additionally,
symbolic traceability links will be built at this time between
the newly added apply elements of the rule and all of the
rule’s match elements.Note that the fact that the graphs are
potentially joint allows us to overlap a rule with the path con-
dition by anchoring the rule on traceability links shared by
the path condition and the rule graph. In the mathematical
development that follows we will often refer to the joint parts
of two or more typed graphs using the term “glue”.

Definition C.3 Path Condition and Rule Combination – No

Dependencies

The combination of a path condition pc and a rule rl, when

rl has no dependencies, is described by the relation combine→ ⊆
PATHCONDsr

tg×P (PATHCONDsr
tg)×RULEsr

tg×P (PATHCONDsr
tg),

defined as follows:

rl = 〈V,E,st,τ,Match,Apply
〉
〉 , @e ∈ E .τ′(e) = trace

〈pc,AC,rl〉 combine−−−−→ AC ∪
⋃

pc′∈AC pc′
trace
t rl

Relation combine→ in Definition C.3 models the operational
combination step. The relation has three input arguments: the
first argument is the original path condition from the previous
layer; the second argument is the set of path conditions accu-
mulated thus far by combining other rules in the current layer
with the original path condition; and the third argument is the
rule from the current layer now being combined. The fourth
argument of the relation, the relation’s output, is the new set
of path conditions resulting from this combination.Briefly,
the equation in Definition C.3 states that whenever a rule has
no backward links typed as trace (i.e. no dependencies), all
path conditions in the accumulator set are kept, along with the
result of combining all the path conditions in the accumulator
set with the current rule.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 49

Definition C.4 Path Condition and Rule Combination – Un-

satisfied Dependencies

The combination of a path condition pc and a rule rl, when

rl has dependencies that are not satisfied by pc, is described

by the relation combine→ ⊆ PATHCONDsr
tg×P (PATHCONDsr

tg)

×RULEsr
tg×P (PATHCONDsr

tg), defined as follows:

¬
(
rl|trace J pc|trace

)
〈pc,AC,rl〉 combine−−−−→ AC

According to the pre-conditions of the equation presented
in Definition C.4, a path condition does not satisfy the depen-
dencies present in a rule if there is no surjective typed graph
homomorphism between the backward links of the rule and
the symbolic traceability links of the path condition. Besides
expressing the fact that all backward links must exist as sym-
bolic traceability links the path condition, the surjective ho-
momorphism allows modeling the case where dependencies
expressed by two (or more) backward links between similarly
typed elements can be satisfied one single symbolic traceabil-
ity link in the path condition.

Definition C.5 Single Partial and Total Combination of a Set

of Path Conditions with a Rule

The single rule partial and total combination relations
p comb→

and t comb→ , both having having signature P (PATHCONDsr
tg)×

RULEsr
tg×RULEsr

tg×P (PATHCONDsr
tg) are defined as follows:

rl ∼= rlgluetma∆

〈AC,rl,rlglue〉
p comb−−−−→ AC ∪

⋃
pc∈AC pc

trace
t (rlgluetma∆)

(C.1)

rl ∼= rlgluetma∆

〈AC,rl,rlglue〉
t comb−−−−→

⋃
pc∈AC pc

trace
t (rlgluetma∆)

(C.2)

Let us start by introducing relation
p comb→ , presented in

Equation (C.1) of Definition C.5. The relation takes as ar-
guments a set of path conditions being accumulated for the
current layer, the rule to be combined, and an rlglue argument
indicating the place in each of the input path conditions the
rule should be anchored to during the combination step. The
relation’s output is a new set of path conditions. This new set
includes all the original path conditions, as well as each path
condition in the accumulator set “glued” to a copy of rule be-
ing examined. Note that the relation

p total→ in Equation (C.2)

is similarly defined, except for the fact path conditions in the
accumulator set are not preserved in the relation’s output set.

Let us now define how a rule is combined with a path
condition, whenever its backward links can be found several
times in that path condition. We formalize it in Definition C.6,
by means of relations

p step→ and
t step→ . These two relations op-

erationally describe the sequence of steps necessary to “glue”
a rule at multiples places of a path condition. The set of places
targeted in the path condition for receiving a copy of the rule
is given by the sets partialSet and totalSet (found respec-
tively in Equation (C.2) and Equation (C.4)). As expected,
these sets contain the set of traceability links in the path con-
dition where copies of the rule need to be anchored to.

Definition C.6 Multiple Partial and Total Combination of a

Set of Path Conditions with a Rule

The multiple rule partial and total combination relations
p comb→

and t comb→ , both having having signature P (PATHCONDsr
tg)×

P (RULEsr
tg)×RULEsr

tg×P (PATHCONDsr
tg) are defined as fol-

lows:

〈AC,rl, /0〉 p step−−−→ AC
(C.1)

rlglue ∈ partialSet, 〈AC,rl,rlglue〉
p comb−−−−→ AC′′ ,

〈AC′′,rl, partialSet \{rlglue}〉
p step−−−→ AC′

〈AC,rl, partialSet〉 p step−−−→ AC′
(C.2)

〈AC,rl, /0〉 t step−−−→ AC
(C.3)

rlglue ∈ totalSet , 〈AC,rl,rlglue〉
t comb−−−−→ AC′′ ,

〈AC′′,rl, totalSet \{rlglue}〉
t step−−−→ AC′

〈AC,rl, totalSet〉 t step−−−→ AC′′
(C.4)

Having Definition C.5 and Definition C.6 in mind, we can
now proceed to define the complete combination relation of a
rule with a path condition in the case of partially and totally
satisfied dependencies.

Definition C.7 Path Condition and Rule Combination – Par-

tially and Totally Satisfied Dependencies

The combination of a path condition pc and a rule rl, when

rl has dependencies that are satisfied by pc, is described

by the relation combine→ ⊆ PATHCONDsr
tg × P (PATHCONDsr

tg)×

50 Levi LÚCIO et al.

RULEsr
tg×P (PATHCONDsr

tg), defined as follows:

rl|trace J pc|trace ,

〈AC,rl, partialsat(rl, pc)〉 p comb−−−−→ AC′′ ,

〈AC′′,rl, totalsat(rl, pc)〉 t comb−−−−→ AC′

〈pc,AC,rl〉 combine−−−−→ AC′

where

rlglue ∈ partialsat(rl, pc) ⇐⇒

rlglue v pc∗ ∧ rl|trace J rlglue ∧

@rl′ .(rlglue v rl′ v pc∗∧‖rl‖J rl′)

and

rlglue ∈ totalsat(rl, pc) ⇐⇒ rlglue v pc∗ ∧ ‖rl‖J rlglue

The top equation in Definition C.7 defines the combine→ re-
lation for when rule rl has dependencies that are satisfied by
path condition pc. The pre-conditions in the equation state
that the backward links in the rule are found in the path condi-
tion, as expected. Additionally, two sequential steps perform
the gluing of the rule rl on all path conditions in accumu-
lator AC, wherever the rule is partially and/or totally found
in each of those path conditions. Relations

p comb→ and t comb→
presented in Definition C.6 are used to model these two oper-
ational “gluing” steps. Functions partialsat and totalsat, de-
scribed in the latter part of Definition C.7, are used to gather
the places of path condition pc where copies of the rule need
to be anchored to.

Definition C.8 Combining a Path Condition with a Layer

The layer combination relation
combpclayer→ ⊆ PATHCONDsr

tg×
P (PATHCONDsr

tg)× LAYERsr
tg × P (PATHCONDsr

tg) relation is

defined as follows:

〈pc,AC, /0〉 combpclayer−−−−−−−→ AC

rl ∈ layer, 〈pc,AC ,rl〉 combine−−−−→ AC′′,

〈pc,AC′′, layer \{rl}〉 combpclayer−−−−−−−→ AC′

〈pc,AC, layer〉 combpclayer−−−−−−−→ AC′′

After the step in Definition C.8 is repeated for all the path
conditions in the previous layer, these new sets of path condi-
tions are collected together to produce the working set of path
conditions for the layer. This process is modeled by relation
combpcsetlayer→ in Definition C.9.

Definition C.9 Combining a Set of Path Conditions with a

Layer

The path condition layer step relation
combpcsetlayer→ ⊆

P (PATHCONDsr
tg)× LAYERsr

tg × P (PATHCONDsr
tg) relation is

defined as follows:

〈 /0, layer〉 combpcsetlayer−−−−−−−−→ /0

pc ∈ AC, 〈pc,{pc} , layer〉 combpclayer−−−−−−−→ AC′,

〈AC \{pc}, layer〉 combpcsetlayer−−−−−−−−→ AC′′

〈AC, layer〉 combpcsetlayer−−−−−−−−→ AC′∪AC′′

This working set of path conditions obtained for each
layer is then itself combined with the rules in the next layer
as in the algorithm just described, to obtain yet another work-
ing set of path conditions. This process will then continue in
this layer-by-layer fashion through the transformation and is
formally described in Definition C.10.

Definition C.10 Path Condition Generation

Let [layer :: tr]∈ TRANSFsr
tg be a transformation, where layer∈

LAYERsr
tg is a Layer and tr also a transformation. The

pathcondgen→ ⊆
P (PATHCONDsr

tg)× TRANSFsr
tg×P (PATHCONDsr

tg) is defined

as follows:

〈AC, []〉 pathcondgen−−−−−−−→ AC

〈εpc,{εpc}, layer?〉 layercomb−−−−−→ AC′′ , 〈AC′′, tr〉 pathcondgen−−−−−−−→ AC′

〈εpc, [layer :: tr]〉 pathcondgen−−−−−−−→ AC

where layer? =
⋃
rl∈l

rl?

Note that in Definition C.10, the recursive rule considers
the expansion (layer?) of all the rules in a layer (see Defini-
tion B.10). This allows us to deal with polymorphism during
path condition generation. In particular, given one rule rl of
layer, we consider for path condition generation all rules con-
taining possible of replacements of each match element in rl

of certain type by an element belonging to one of the type’s
subtypes, as defined in the source metamodel sr.

Notation: We will use the abbreviation PATHCOND(tr) to
represent the set of path conditions AC produced for a trans-
formation tr, where 〈εpc, [layer :: tr]〉 pathcondgen−−−−−−−→ AC.

Definition C.11 Abstraction of a Transformation Execution

by a Path Condition

Let tr ∈ TRANSFsr
tg be a DSLTrans transformation. Let also

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 51

pc= 〈V,E,st,τ,Match,Apply,Rules〉 ∈ PATHCOND(tr) of be

a path condition of tr and ex= 〈V ′,E ′,st ′,τ′, Input,Out put〉 ∈
Exec(tr) be an execution of tr. We have that ex is abstracted

by pc, noted ex� pc, if and only if the set of transformation

rules of tr combined in pc and the set of transformation rules

of tr used to built ex is the same, and:

(
∀rl ∈ Rules . Match(rl)C Input∗

)
∧ Out put J Apply

(C.5)

and

(
∀trc ∈Components(pc|trace) . trcC ex

)
∧(

∀e′ ∈ E ′∃e ∈ E . τ
′(e′) = trace =⇒ τ(e) = trace

)
(C.6)

To understand the abstraction relation in Definition C.11,
recall that during the construction of a transformation exe-
cution rules are matched injectively in the input model. This
information is present in the first condition of the abstraction
relation (Proposition C.5) via the injective typed graph ho-
momorphism between the match part of the copies of rules
“glued” onto the path condition and the containment transi-
tive closure of the input part of the transformation execution.
This relation enforces the fact that certain parts of the exe-
cution were found, or matched, by certain parts of the path
condition. On the other hand, the surjection from the output
of the execution towards the apply part of the path condi-
tion models the fact that the output of the execution has been
completely built by instantiating the apply parts of the rules
contained in the path condition.

The second condition of the abstraction relation (Propo-
sition C.6) checks for the fact that symbolic traceability links
in the path condition and traceability links in the execution
correctly correspond to each other. This is modeled by the
fact that all strongly connected components in the path con-
dition, composed only of symbolic traceability links, are in-
jectively found on the execution. This injection models the
fact that traceability graphs between individual or combined
rules in the path condition are necessarily found in the exe-
cution. Note that components of the path condition are con-
sidered because of the fact that disconnected rules in the path
condition may have matched over common elements of a par-
ticular execution. As such, a full injection between the com-
plete traceability graph in the path condition and the execu-
tion would be incorrect. Additionally, in the second part of
Proposition C.6 we check the fact that every traceability link

in the execution can be found in the path condition. This ad-
ditional sanity check enforces that no spurious traceability
links that could not have been created by the rules present in
the path condition exist in the transformation execution.

Finally, the last clause of the abstraction relation states
that rule copies that are repeated a number of times in the
path condition need to be found at least a similar amount of
times in the abstracted transformation execution.

It is important to mention that another abstraction rela-
tion, weaker or stronger, could have been chosen. The ab-
straction relation presented in Definition C.11 suits our needs
in the sense that it allows us to demonstrate the validity and
completeness of our proof technique, as we will show in the
text follows. Additionally, it is particularly interesting be-
cause it makes sure that, given a DSLTrans transformation,
each of its transformation executions is abstracted by one and
only one of its path conditions. This result adds to the consis-
tency of our theory and is also exposed later in this section.

Proposition C.1 (Validity) Every path condition abstracts at

least one transformation execution.

Proof. Let tr ∈ TRANSFsr
tg be a DSLTrans transformation. We

wish to demonstrate that, for all path conditions pc∈ PATHCOND(tr),
there exists a transformation execution ex ∈ EXEC(tr) of the
set of rules used to build pc such that pc abstracts ex (i.e.
ex� pc), as formally expressed in Definition C.11. We can
prove this property by induction on the set of transformations
TRANSFsr

tg (see Definition B.11), as follows:

– Base case: the base case is the case when we have tr = [],
i.e. the empty transformation. In this case, according to
Definition C.10, only the empty path condition εpc exists
in the path condition set. The empty path condition ab-
stracts the empty transformation execution εex (see Defi-
nition B.16), as well as any execution for which the input
model is never matched by any rule (consequently hav-
ing an empty output model). For any of these transfor-
mation executions, Equation (1) of the abstraction rela-
tion definition is satisfied, as: a) no rule copy exists in the
path condition and the output of the transformation ex-
ecution is empty – empty typed graph homomorphisms
thus satisfy the all the conditions of the proposition; and
b) Equation (2) of the abstraction relation definition triv-
ially holds because no traceability links exist either in the
path condition or in any of the considered executions.

– Inductive case: assuming every path condition generated
for a transformation tr abstracts at least one transforma-

52 Levi LÚCIO et al.

tion execution, we need to show that every path condition
generated for a transformation tr′, resulting from adding
a layer l ∈ LAYERsr

tg to tr, will also abstract at least one
transformation execution.

In order to demonstrate the inductive case we need to
show the property holds for all path conditions resulting from
combining the rules of layer l with any path condition gen-
erated for tr. These path conditions for transformation tr′ are
built as expressed in Definition C.8. According to this defini-
tion, path conditions for tr′ are built by incrementally com-
bining the path conditions generated for tr with a rule of layer
l, until all the rules in l have been treated. We can thus again
use induction for this proof, this time on the set of possible
layers LAYERsr

tg built as expressed in Definition B.11.

– Base case: this is the case where layer l contains no rules.
In this case, by the base case of definition C.8, no new
path condition is added to the set of path conditions gen-
erated for the transformation tr. As such the tr = tr′ and
by induction hypothesis the property trivially holds for all
path conditions generated for tr′.

– Inductive case: for the inductive case (transitive case of
Definition C.8) we need to show that, assuming the prop-
erty holds for all path conditions generated for a transfor-
mation tr, then the property will also hold for a transfor-
mation tr′ – where tr′ results from adding a new rule rl to
the last layer of tr. We will thus need to consider the four
cases of rule combination:

1. Rule rl has no dependencies (Definition C.3).
2. Rule rl has dependencies and cannot execute (Defini-

tion C.4).
3. Rule rl has dependencies and may and/or will execute

(Definition C.7).

The property trivially holds for case 2, given that no new
path conditions are added to the path condition set gener-
ated for tr and that the property holds for tr by induction
hypothesis.
When a rule rl is added to the last layer of tr such that
cases 1 or 3 occur, new path conditions are added to the
path condition set. Both cases are based on combining a
path condition with a rule, as laid out in Definition C.2.
In order to demonstrate this second inductive step we then
need to show that, whenever the property holds for a path
condition pc generated for a transformation tr, the combi-
nation of pc with a rule rl results in a new path condition
where the property is respected.

We start by picking for pc an execution ex such that pc

abstracts ex. We know such a transformation execution
exists by induction hypothesis. We can then build an in-
put model m as the result of uniting the input model of ex

with a model that can be matched by rl. If we execute tr′

having m as input model we obtain transformation execu-
tion ex′.
Let us now demonstrate ex′ is abstracted by the path con-
dition pc′ = pc

trace
t rl, the combination of pc with rl as

shown in Definition C.2. We first recall the conditions of
the abstraction relation in Definition C.11:
1. a) injective typed graph homomorphisms must exist

between the match parts of all the rule copies in the
path condition and the input of the execution and b)
a surjective typed graph isomorphism must exist be-
tween the output of the execution and the apply part
of the path condition.

2. a) injective typed graph homomorphisms must exist
between all strongly connected components of the path
condition composed of only symbolic traceability links
and b) all isolated traceability links in the transforma-
tion execution must be found at least once in the path
condition.

Let us start by arguing for why condition 1 a) holds for
pc′ and ex′. Because we know rule rl has executed on
the input model of ex′, we know by Definition B.12 of the
function matching a DSLTrans rule that an injective typed
graph homomorphism exists between the match part of rl

and ex′. When rl is combined with pc, its match part is
preserved in pc and as such an injective typed graph ho-
momorphism must exist between it and ex′. By induction
hypothesis and because the combination operator is ad-
ditive (meaning nothing existing in pc is deleted during
combination) we know injective typed graph homomor-
phisms continue to exist between the match parts of all
other rule copies in the path condition and the input of
the ex′.

In what concerns condition 1 b) above, we know by Def-
inition B.13 and Definition B.14 that one or more copies
of graphs isomorphic to the apply part of rl are added to
the output of ex. Also, by Definition B.14, we know this
addition preserves the output of ex and we also know by
hypothesis that a surjective typed graph isomorphism ex-
ists between the output of ex and the apply part of pc. As

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 53

mentioned before, the combination of pc and rl is addi-
tive and as such we can also deduce that a typed graph
isomorphism exists between the apply part of any copy rl

added to ex and the apply part of rl added to pc. As such,
all old and new edges and nodes in ex′ can be surjectively
found in pc′.

We will now discuss the reasons why condition 2 a) of
the abstraction relation holds for pc′ and ex′. When pc

and rl are combined, by Definition C.2 a copy of the rule
is “glued” on top of pc. Symbolic traceability links are
added between elements of the match part of the copy
of the rule and of the apply copy of the rule, for those
elements in the apply part of the copy of the rule not pre-
viously connected to backward links. We also know by
Definition B.13 that traceability links are similarly added
to the copy of rl that is merged with ex. Because of the
induction hypothesis we know that injective typed graph
homomorphisms exists between all the strongly connected
components composed of traceability links of pc and ex.
When rl is combined with pc two cases can occur: a) rl

has no backward links, in which the proposition trivially
holds because isomorphic isolated strongly connected com-
ponents are added both to pc and ex; b) rl has back-
ward links, in which case the newly added components
will connect to existing strongly connected components
in pc and ex, forming additional strongly connected com-
ponents. In this case, an injective typed graph homomor-
phism exists between each of the newly formed strongly
connected components in pc and at least one newly formed
strongly connected component in ex. This is so because,
by Definition C.11 of the abstraction relation between
a path condition and a transformation execution, the set
of rules combined into pc and the set of rules that have
executed is the same. The combination of these rules in
the path condition, according to Definition C.2, replicates
patterns that are produced in the execution by Definition B.13
and Definition B.14. Note that condition 2 a) of the ab-
straction relation provides additional guarantee that, when
multiple partially and/or totally satisfied dependencies oc-
cur during path condition combination (Definition C.7),
the corresponding executions are correctly abstracted given
each place where the rules are “glued” corresponds to a
different strongly connected component.

Condition 2 b) of the abstraction relation trivially holds
as each new traceability link added to ex when rl executes
has at least one corresponding symbolic traceability link
in pc′, resulting from the combination of pc with rl.

Proposition C.2 (Completeness) Every transformation exe-

cution is abstracted by one path condition.

Proof. Let tr ∈ TRANSFsr
tg be a DSLTans transformation. We

wish to demonstrate that, for all transformation executions
ex ∈ EXEC(tr), a path condition pc ∈ PATHCOND(tr) exists
such that ex is abstracted by pc, as formally expressed in Def-
inition C.11.Completeness can be shown as a corollary of
Proposition C.1 about the validity of path condition gener-
ation. The complete set of executions EXEC(tr) (see Defini-
tion B.16) can be split into two kinds of executions:

1. The empty execution εex or the execution where the in-

put model was not matched by any rule. As mentioned
in Proposition C.1, these executions are abstracted by the
empty path condition εpc.

2. The execution ex where a number of rules of tr have been

applied to the input model, where each transformation
rule rl of tr may have been applied more than once. In
this case we have that, because all possible and valid rule
combinations are considered when building path condi-
tions, a path combination pc exists that contains one or
more copies of each of the rules used when operationally
building ex.Moreover, during the proof of validity of path
condition generation in Proposition C.1 we demonstrate
that, when we add a new rule rl to the last layer of a
transformation tr (such that we have a new transforma-
tion tr′), the rule combination step explained in Defini-
tions C.3, C.4 and C.7 produces a new set of path condi-
tions where each path condition in that set still abstracts
at least one transformation execution of tr′. This part of
the proof (the second induction) is achieved by build-
ing for transformation tr′ an input model m that can be
matched by rl (as well as by all the other rules of tr),
and then building from m a new transformation execu-
tion that is abstracted by a path condition built for tr′.
Because in the proof of Proposition C.1, m is such that
it can be matched by rl an arbitrary amount of times, we
know that, independently of the number of times a rule
is applied during the construction of a transformation ex-
ecution, a path condition abstracting that transformation

54 Levi LÚCIO et al.

execution exists.
Additionally, input elements that are not matched by any
rule do not affect the abstraction relation, as explained in
case 1 above. This means we also know that executions
involving input models that are only partially matched by
the rules of tr are also abstracted by one path condition.

Lemma C.1 (Uniqueness) A transformation execution is ab-

stracted by exactly one path condition.

Proof. Let tr ∈ TRANSFsr
tr be a model transformation. We

will demonstrate that two different path conditions pc1, pc2 ∈
PATHCOND(tr) cannot exist such that we have a transforma-
tion execution ex ∈ EXEC(tr) where ex� pc1 and ex� pc2.

We will do so by attempting to to build an ex ∈ EXEC(tr)

such that ex� pc1 and ex� pc2 and demonstrating that it is
always the case that such is not possible. In order to structure
our argumentation, we will consider two cases:

1. the case where no rules in tr have dependencies.
2. the case where some rules in tr have dependencies.

We start by considering that tr falls into case 1 above. By
Definition C.10 of path condition generation, each rule ap-
pears at most once in a path condition. Also, by construction,
each path condition always contains a different combination
of rules. We additionally know from Definition B.11 that the
rules that compose tr necessarily have non-overlapping match-
ers. We can nonetheless build a model m as the typed graph
union of two input models m1 and m2, where injective typed
graph morphisms can be found between the match parts of the
rule copies that form pc1, and m1. Injective typed graph mor-
phisms can be found as well between the match parts of the
rules that form pc1, and m2. We thus know that injective typed
graph morphisms can be found between the rule copies that
compose pc1 and pc2, and m. This satisfies the first condition
of Equation (1) in Definition C.11 of abstraction relation.

Let us now consider that ex1 and ex2 are obtained by
executing the transformations rules combined into pc1 and
pc2, having m as input model. As mentioned above, we know
that the rules in pc1 and pc2 are not completely overlapping.
This means that, due to the way in which m is built (ex-
plained above), m will always have at least one input that is
matched by rules of pc1 but not by rules of pc2 (and vice-
versa). Thus, when the transformation rules combined into
pc1 execute having m as an input model, there will always
exist a traceability link generated between an input and an

output element of m that is not generated when the transfor-
mation rules combined into pc2 execute having m as an input
model (and vice-versa). As such, we have that ex1 is always
different from ex2 by at least one traceability link. Given that
this traceability link is symbolically represented in either pc1

or pc2 (but not in both), according to condition Equation (2)
in Definition C.11 it cannot be that either pc1 or pc2 abstract
ex1 and ex2 simultaneously.

We will now analyse the scenario where tr falls into case 2
above, where some rules in tr have dependencies. For this
case, assume we have a path condition pc1 contained in the
set of path conditions generated for tr, considering layers up
to layer l of tr have executed. Assume also we have a rule rl

of layer l+1 of tr that has dependencies and can be combined
with pc. If rule rl is totally combined with path condition
pc1, according to Definition C.7 and Figure 12b, then noth-
ing needs to be shown as pc1 is not kept in the path condition
set but rather replaced by its combination with rl. However,
in case rule rl is partially combined with pc, as defined in
Definition C.7 and Definition C.5, then multiple path condi-
tions are generated and additionally pc1 is kept in the path
condition set. Consider pc2 is one of the newly created path
conditions. In this case we can find a model m that can be
injectively matched by the rule copies in both pc1 and pc2: m

is the union of the input model isomorphic to the match part
of pc1, united with the input model isomorphic to the match
part of pc2 (including symbolic traceability links).

As before, we now consider that ex1 and ex2 are obtained
by executing the rules used to build pc1 and pc2, respectively,
having m as input model. In this case, we have that either rl

was “glued” across different rule copies in pc2, or over one
single rule copy of pc2. In the first case, by Definition B.8 of
transformation rule we know either a new edge between out-
put elements or a new output element have been produced in
ex2, but not in ex1. According to the second part of Proposi-
tion 2 in Definition C.11 or the second part of Proposition 2
in Equation (1), this makes it such that it cannot be that either
pc1 or pc2 abstract ex1 and ex2 simultaneously.

Finally, let us consider an additional path condition pc3,
also obtained from the partial combination of pc1 with rl and
where pc3 is different of pc1. In this case we have that pc2

and pc3 resulted from the combination of exactly the same
rules, with the difference that certain rules have been “glued”

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 55

at more locations of one path condition than of the other. We
can thus build a model m that can be injectively matched by
the rule copies in both pc1 and pc2: the model is isomorphic
to the the match part of the path condition (including sym-
bolic traceability links) that has been “glued” more copies of
rl upon. When we now obtain ex2 and ex3 by executing the
rules in pc2 and pc3, we will have that one of these execu-
tions will necessarily contain more copies of rl’s apply pat-
tern than the other. Given the fact that these copies will nec-
essarily have been “glued” over different strongly connected
graphs of pc2 and pc3 (because rules having no dependencies
do not overlap as explained for case 1), there cannot be an in-
jective typed graph homomorphisms between all the strongly
connected components formed by the traceability graphs of at
least one of path conditions pc2 or pc3, and ex1 (likewise for
ex2). Given this is required by the first part of Proposition 2
in Equation (1) of the abstraction relation, it cannot be that
either pc1 or pc2 abstract ex1 and ex2 simultaneously.

56 Levi LÚCIO et al.

D Validity and Completeness of Property Verification

Definition D.1 Property of a Transformation

Let tr ∈ TRANSFsr
tg be a DSLTrans transformation. A prop-

erty of tr is a 6-tuple 〈V,E,(s, t),τ,Pre,Post〉, where Pre =

〈V ′,E ′,st ′,τ′〉 ∈ IPATTERNsr and Post = 〈V ′′,E ′′,st ′′τ′′〉 ∈
IPATTERNtg are indirect metamodel patterns. We also have

that V =V ′∪V ′′, E ⊆ E ′∪E ′′ and τ⊆ τ′∪ τ′′, where the co-

domain of τ is the union of the co-domains of τ′ and τ′′ and

the set {trace}. An edge e ∈ E \ E ′ ∪ E ′′ is called a trace-
ability link and is such that s(e) ∈ V ′′, t(e) ∈ V ′ and τ(e) =

trace. Finally we have that there is at least one path condition〈
Vpc,Epc,stpc,τpc,Match,Apply,Rule

〉
∈ PATHCOND(tr) for

which a surjective typed graph homomorphism m
f
J Pre ex-

ists, where m v Match and f (v) 6= f (v′) if v and v′ are ele-

ments of the path condition belonging to the same rule of set

Rule. The set of all properties of transformation tr is called

PROPERTY(tr).

In Definition D.1, pre-conditions use the same pattern
language as the match graph in DSLTrans rules, allowing the
possibility of including several instances of the same meta-
model element as well as indirect links in the property. Indi-
rect links in properties have the same meaning as in the rule
match graph – they involve patterns over the transitive closure
of containment links in pre-condition graphs.

Post-conditions also use the same pattern language as the
apply graphs of DSLTrans transformation rules, with the ad-
ditional possibility of expressing indirect links in post-conditions.
Traceability links can also be used in properties to impose
traceability relations between pre-condition and post-condition
elements.

Note that Definition D.1 includes a condition stating a
surjective typed graph homomorphism needs to exist between
the match part of at least one of the transformation’s path con-
dition, and the pre-condition of the property of interest. This
condition makes sure that the property’s pre-condition can
be found at least in one execution of the transformation ab-
stracted (the mathematical argument for this fact is given in
the proof of Proposition 3). This condition makes the check-
ing the validity of a property in the transformation mean-
ingful. If this condition would not be true then it could be
that the input pattern required by the property would never be

fully matched during transformation execution, making such
a property not relevant6 for the transformation at hand.

Definition D.2 Satisfaction of a Property by an Execution of

a Transformation

Let tr∈ TRANSFsr
tg be a transformation. Let also p= 〈V,E,st,τ,

Pre,Post〉 ∈ PROPERTY(tr) be a property of tr and ex= 〈V ′,E ′,
st ′,τ′, Input,Out put〉 ∈ Exec(tr) be an execution of tr. Exe-

cution ex satisfies property p, written ex |= p, if and only if:

∀ f ∃g .
(
Pre

f
C Input∗ =⇒ p

g
C ex∗

)
where V (Input)∩CoDom(g) =CoDom(f)

Definition D.2 states that, every time a graph that is iso-
morphic to the property’s pre-condition is found in (the con-
tainment transitive closure of) the input model of the trans-
formation’s execution, a graph that is isomorphic to the com-
plete property needs to be found in (the containment transi-
tive closure of) the transformation execution. Note that the
last part of the proposition in Definition D.2 ensures that the
graph that is isomorphic to the property’s pre-condition and
the graph that is isomorphic to the complete property overlap
on their pre-condition parts.

Definition D.3 Satisfaction of a Property by a Path Condition

Let tr∈ TRANSFsr
tg be a transformation. Let also p= 〈V,E,st,τ,

Pre,Post〉 ∈ PROPERTY(tr) be a property of tr and pc=
〈
V ′,E ′,

st ′,τ′,Match,Apply,Rulecop
〉
∈ PATHCOND(tr) be a path con-

dition of tr. Path condition pc satisfies property p, written

pc ` p, if and only if:

∀ f ∃g .
(
in

f
J Pre =⇒ out

g
J p

)
where invMatch∗ ∧ out v pc∗

Additionally Dom(g)∩Match(pc∗) = Dom(f) and f (v) 6=
f (v′), g(v) 6= g(v′) whenever v and v′ are elements of the path

condition belonging to the same rule copy of set Rulecop.

The principle behind the satisfaction relation in Defini-
tion D.3 is the same as the one behind the satisfaction rela-
tion between a property and an execution of a transforma-
tion in Definition D.2: whenever the property’s pre-condition
is found in the path condition then so is the complete prop-
erty. Also, those two graphs found in the path condition share

6 In [6] we have referred to these properties non-provable. In the
work presented here we explicitely disallow the construction of this
class of properties.

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 57

the property’s pre-condition part. This last condition enforces
that the pre- and post-conditions of the property are correctly
linked by traceability link in the path condition.

Proposition D.1 (Validity) The result of proving a property

on a set of path conditions generated for a transformation or

an all executions of that transformation is the same.

Let tr∈ TRANSFsr
tg be a transformation and p∈ PROPERTY(tr)

be a property of tr. This given, we have that transformation

tr satisfies property p if and only if:

∧
pc∈PATHCOND(tr)

pc ` p ⇐⇒
∧

ex∈EXEC(tr)

ex |= p (D.1)

Proof. In order to prove the proposition in Equation (D.1) we
will start by demonstrating that, if property p holds on a path
condition pc generated for tr, then p will necessarily hold on
any execution ex of tr that is abstracted by pc. On the other
hand, if p does not hold on pc then it will not hold for at least
of one execution ex of tr abstracted by pc. This lemma can
be stated as follows:

pc ` p ⇐⇒ ∀ex ∈ {ex ∈ EXEC(tr) | ex� pc} . ex |= p

(D.2)
We thus need to demonstrate both directions of the equiva-
lence in Equation (D.2). On the one hand we need to prove of
the left-to-right direction of the equivalence:

pc ` p =⇒ ∀ex ∈ {ex ∈ EXEC(tr) | ex� pc} . ex |= p

(D.3)

Proposition D.3 is shown to be true in Lemma D.1. We then
need to show the right-to-left direction of the equivalence:

∀ex ∈ {ex ∈ EXEC(tr) | ex� pc} . ex |= p =⇒ pc ` p

(D.4)

Proposition D.4 is shown to be true in Lemma D.2. Once
propositions D.3 and D.4 are proved, we know that all path
conditions on which a property holds represent executions on
which the property also holds. Thus, if the property holds on
all path conditions then it necessarily holds on all executions.
On the other hand, if a property does not hold on one path
condition, making it such that the conjunction on the left side
of the equivalence in Equation (D.1) is false, then according
to Equation (D.2) an execution for which it also does not hold
exists. This makes it such that the conjunction on the right
side of the equivalence in Equation (D.2) is also false.

Lemma D.1 If a property holds for a path condition then

the property holds for any transformation execution that path

condition abstracts.

Let tr be a transformation, pc ∈ PATHCOND(tr) be a path

condition of tr, ex ∈ EXEC(tr) be an execution of tr and

p ∈ PROP(tr) be a property of tr. Then we have that:

pc` p =⇒ ∀ex∈{ex∈ EXEC(tr) | ex� pc} . ex |= p (D.5)

Proof. By Definition D.3 we know that pc ` p is equiva-

lent to proposition ∀ f ∃g .
(
in

f
J Pre =⇒ out

g
J p

)
, where

Pre is p’s pre-condition, in is a subgraph of the containment
transitive closure of the match part of pc, and out is a sub-
graph of the containment transitive closure of pc. Addition-
ally, by Definition D.2 we also know that ex |= p is equivalent

∀ f ∃g .
(
Pre

f
C Input∗ =⇒ p

g
C ex∗

)
, where Input is the input

part of ex.
We will show that the implication holds by analysing the

three cases where, pc ` p, the left side of Proposition D.5
holds.

1. If the precondition of the property cannot be found in the
match part of a path condition pc, then it cannot be found
in the input part of an execution abstracted by pc. For-
mally, we have that, assuming ex is abstracted by pc:

@ f .
(
in

f
J Pre

)
=⇒ @ f ′ .Pre

f ′
C Input∗ (D.6)

where, as before, Input∗ is the containment transitive clo-
sure of of the input part of ex and in is a subgraph of the
match part of pc. Proposition D.6 holds because of the
fact that the surjection between in and Pre is defined such
that it is in fact a set of injective typed graph homomor-
phisms between subgraphs of in belonging to different
rule copies that compose pc, and Pre. We know such a
set of injective typed graph homomorphisms cannot be
found from in into Pre. However, the abstraction relation
in Definition C.11 states that an injective typed graph ho-
momorphism exists between each rule copy in the match
part of pc and Input∗. We thus know that there cannot ex-
ist an injective typed graph homomorphism between Pre

and Input∗.
2. For certain executions, the property holds on the path con-

dition but the property’s pre-condition cannot be found in

58 Levi LÚCIO et al.

the execution.

∀ f ∃g .
(
in

f
J Pre∧out

g
J p

)
=⇒ @ f ′ .

(
Pre

f ′
C Input∗

)
(D.7)

These are the executions where a set of injective typed
graph homomorphisms can be found from in into Pre, but
not from in into Input∗, as required by the abstraction
relation. If this is the case then this means that at least two
vertices of in belonging to different rule copies that were
mapped by f into the same vertex of Pre, are mapped into
different vertices of Input∗ by f ′ (or vice-versa).

3. For the remaining set executions abstracted by pc, if the
property holds on the path condition then the property
holds on the execution. Formally, according to Defini-
tion D.3 and Definition D.2 we have that:

∀ f ∃g .
(
in

f
J Pre∧out

g
J p

)
=⇒

∀ f ′ ∃g′ .
(
Pre

f ′
C Input∗∧ p

g′
C ex∗

)
where Dom(g)∩Match(pc∗) = Dom(f) and

V (Input)∩CoDom(g′) =CoDom(f ′) (D.8)

This is the case where every two vertices of in belonging
to different rule copies that were mapped by f into a com-
mon vertex of Pre, are also mapped into a common vertex
of Input∗ by f ′. We thus need to show that the fact that the
post-condition of the property holds on the path condition
implies that the post-condition of the property also holds

on the execution, i.e. that out
g
J p =⇒ p

g′
C ex∗. This

proposition is true because we know by Definition C.11
of abstraction relation that a surjective typed graph homo-
morphism exists between the output part of ex and the ap-
ply part of pc. By composing this surjection with the sur-
jection between out and p we take as hypothesis, we know
a surjective typed graph homomorphism exists between
the output of ex and p. The inverse of this composed
homomorphism contains an injective typed graph homo-
morphism between p’s post-condition and ex. We are thus
missing accounting for the traceability links between the
pre- and post-condition of property p, if they exist. Ac-
cording to Proposition D.8 we know that in and out over-
lap on their subgraphs that are isomorphic to p’s pre-
condition. By Definition C.11 of the abstraction relation,
we know that an injective typed graph homomorphism
can be found between each strongly connected compo-
nent formed of symbolic traceability links of pc, and ex.

We also know that a typed graph surjective homomor-
phism exists between out and p. We thus know that the
traceability links between the pre- and post-condition of p

can be injectively found in ex. Note that strongly disjoint
connected symbolic traceability link components mapped
from pc to ex may be mapped onto joined traceability link
components in ex when disjoint vertices of the match part
of pc are mapped onto the same input vertex in ex.

The three cases above cover all executions that can be
abstracted by a path condition, and as such we know that if
the property holds on a path condition, it will necessarily hold
on all the executions that path condition abstracts.

Lemma D.2 If a property holds for a transformation execu-

tion then the property holds for the path condition that ab-

stracts it.

Let tr be a transformation, pc ∈ PATHCOND(tr) be a path

condition of tr, ex ∈ EXEC(tr) be an execution of tr and

p ∈ PROP(tr) be a property of tr. Then we have that:

∀ex∈{ex∈ EXEC(tr) | ex� pc} . ex |= p =⇒ pc` p (D.9)

Proof. We will demonstrate Proposition D.9 holds by contra-
posing it:

¬(pc ` p) =⇒

∃ex ∈ {ex ∈ EXEC(tr) | ex� pc} . ¬(ex |= p) (D.10)

By Definition D.3 we know that pc ` p is equivalent to

proposition ∀ f ∃g .
(
in

f
J Pre =⇒ out

g
J p

)
, where Pre is p’s

pre-condition, in is a subgraph of the containment transitive
closure of the match part of pc, and out is a subgraph of the
containment transitive closure of pc. We also know by Defini-

tion D.2 that ex |= p is equivalent ∀ f ∃g .
(
Pre

f
C Input∗ =⇒

p
g
C ex∗

)
, where Input is the input part of ex. After replac-

ing the left and the right hand side of Proposition D.10 by
equivalent formulas and solving the negations we reach the
conclusion we need to prove:

∃ f ∀g .
(
in

f
J Pre∧¬(out

g
J p)

)
=⇒

∃ex ∈ {ex ∈ EXEC(tr) | ex� pc} .

∃ f ′ ∀g′ .
(
Pre

f ′
C Input∗ =⇒ ¬(p

g′
C ex∗)

)
(D.11)

We thus need to demonstrate that whenever the pre-condition
of the property is found at least once in a path condition, but
not its corresponding post-condition, then the same thing hap-

A Technique for Symbolically Verifying Properties of Graph-Based Model Transformations 59

pens for at least one of the executions abstracted by that path

condition. We know by Proposition D.11 that in
f
J Pre, i.e.

the precondition of the property is found at least once in the
path condition. We thus know that there exists one execu-

tion for which Pre
f ′
C Input∗ holds, which is the execution for

which the surjective typed graph homomorphism f maps ver-
tices belonging to the match parts of different rule copies in
the same fashion that the set of injective typed graph homo-
morphisms from the abstraction relation in Definition C.11
maps to the match part of pc onto input∗.

In order to complete the proof we need to show that the
fact that ¬(out

g
J p), i.e. if the complete property cannot be

found in the path condition, then¬(p
g′
C ex∗), i.e. the complete

property cannot be found in the execution. Note that, accord-
ing to Definition D.3 and Definition D.2, we know the con-
sidered complete property graphs both in p and ex found by g

and g′ are anchored on the pre-condition graphs of the prop-
erty found by f and f ′. Because of the abstraction relation,
we know a surjective typed graph homomorphism between
the output of ex∗ and the apply part of pc exists. Given a sur-
jective typed graph homomorphism does not exist between
pc and p, we know certain vertices and/or edges that exist in
p, either in its apply part or in its symbolic traceability links,
do not exist in pc. If the missing vertices and/or edges are
part of the apply part of p then we are sure an injective typed
graph homomorphism cannot exist between p and ex because
ex also does not contain those vertices or edges. If the missing
edges are symbolic traceability edges then, according to the
condition on strongly connected components in the abstrac-
tion relation in Definition C.11, we know that the traceability
links in ex can be surjectively mapped onto pc. Because some
of those traceability links are missing in p, an injective typed
graph homomorphism cannot exist between p and ex.

Proposition D.2 (Completeness) Properties of a transforma-

tion can be shown to either hold for all transformation exe-

cutions, or not hold for at least one transformation execution.

Proof This results follows from two previous results: Propo-
sition C.2, that tells us that every transformation execution
is abstracted by one path condition; and Proposition D.1 that
shows us that every path condition is taken into consideration
during property proof. Note that Lemma C.1 guarantees con-
sistency of our results, in the sense that the uniqueness of one

path condition per transformation execution guarantees that a
property cannot be proven to be both true and false for two
path conditions representing the same transformation execu-
tion.

