
Debugging of Model Transformations and
Contracts in SyVOLT

Bentley James Oakes, Clark Verbrugge, Levi Lúcio, Hans Vangheluwe

McGill University, fortiss GmbH, University of Antwerp, Flanders Make

October 16, 2018



Presentation Structure

1. Verification activity
Proving structural contracts

2. Debugging
Detecting/localizing artefact errors in the

verif. activity

Experience report

Debugging in Verif. Tool - Verification vs. Debugging - Debugging Improvements

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 2 / 19



Outline

1 Verification Activity

2 Debugging Stage 1: Analysis

3 Debugging Stage 2: Monitoring

4 Debugging Stage 3: Reporting

5 Conclusion

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 3 / 19



Motivation

GIVEN: A transformation divided into
layers, containing LHS/RHS rules

GOAL/WHY: Understand
transformation’s behaviour

Relation between input/output elements

WHAT: Prove structural contracts
to guarantee element existence

HOW: Create all possible rule
combinations through symbolic
execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.

Ph.D. Dissertation. McGill University.

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 4 / 19



DSL Transformation Language

Rules are arranged in layers, where each layer fully executes before the next

Rules have Match part and Apply part

Reduced expressiveness - no deletion/loops

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 5 / 19



Symbolic Execution

Goal: Create all possible transformation executions

Example: Combine four rules into a path condition:

Symbolically execute each layer of the transformation

Resolve dependencies between rules

Final set of path conditions represents all valid transformation possibilities

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 6 / 19



Contract Proving

Contract: “A Family with a daughter and a mother always produces a Man
element”

Contract elements matched onto path condition

Matching failure indicates counter-example to the contract
Set of rules as counter-example

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 7 / 19



Overview

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 8 / 19



Outline

1 Verification Activity

2 Debugging Stage 1: Analysis

3 Debugging Stage 2: Monitoring

4 Debugging Stage 3: Reporting

5 Conclusion

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 9 / 19



Stage 1: Analysis

Before symbolic execution, analyze transformation and contracts

Sanity check - transformation/contract valid

Record-keeping - record dependencies

“A Family with a father, mother, son and
daughter should always produce two Man
and two Woman elements connected to a

Community”

Are contract elements present in the
transformation?

Are element creation dependencies
satisfied?

Which rules does this contract depend
on?

Enables slicing - selecting subset of
rules to symbolically execute

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 10 / 19



Fixing Input Errors

Rule:

Contract:

Woman in rule =/= Female in
contract

Typos/inconsistencies prevent
satisfying contracts

Analysis:

Check if elements and dependencies
are satisfied

Error: Meta-model element
‘Female’ not found in any rule!

Lists of rules this contract depends on
Required rules for contract
Pos FourMembers:
[‘Daughter2Woman’, ‘Father2Man’,
‘Mother2Woman’, ‘Son2Man’...]

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 11 / 19



Reducing Errors

Contract/rule elements must be typed by transformation meta-models
Should be enforced by tooling

MPS:

Discussion Question: Bug prevention is not debugging, but highly related

Debugging can be generalizing larger classes of bugs?

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 12 / 19



Outline

1 Verification Activity

2 Debugging Stage 1: Analysis

3 Debugging Stage 2: Monitoring

4 Debugging Stage 3: Reporting

5 Conclusion

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 13 / 19



Stage 2: Monitoring

Recall: SyVOLT performs symbolic
execution before proving contracts

Monitor that all rules are symbolically
executed

Symbolic Execution Tree:

Error: Rule ‘A’ was not

symbolically executed on layer C!

Rule ‘A’ depends on rules: [...]

Causes:

Multiplicity issue where dependency is
not executed enough times

Technique to remove invalid path
conditions

Invalid means not respecting
containment constraints

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 14 / 19



Outline

1 Verification Activity

2 Debugging Stage 1: Analysis

3 Debugging Stage 2: Monitoring

4 Debugging Stage 3: Reporting

5 Conclusion

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 15 / 19



Stage 3: Reporting

Verification produces counter-examples (rule combinations) to a contract

Want to report why a particular contract is not satisfied

a) Name: Neg_SchoolOrdFac

Num Succeeded Path Conditions: 6

Num Failed Path Conditions: 3

b) Explaining contract result:

Good rules: (Rules in success set and not failure set)

dfacilities...OrdinaryFacilityPerson

Bad rules: (Rules common to all in failure set)

dfacilities...SpecialFacilityPerson

c) Contract requires elements from successful rules of type:

School

OrdinaryFacility

Discussion Question: Is this output debugging or verification?

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 16 / 19



Visualization

Counter-example to the Neg SchoolOrdFac contract has a SpecialFacility instead
of an OrdinaryFacility

Match0

Apply1

Daughter2
Woman

Family3

Child

Woman

daughters

family

District

SpecialFacility

goesTo

Match10

Apply11

Neighborhood2
District

Neighborhood

Family14

schools

registeredIn

facilities

Match19

Apply20

d...SpecFacPerson

School

Service

specialstudents

members

Better visualization required!

What elements make the
contract succeed?

If the contract fails, what
changes would make the
contract succeed?

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 17 / 19



Outline

1 Verification Activity

2 Debugging Stage 1: Analysis

3 Debugging Stage 2: Monitoring

4 Debugging Stage 3: Reporting

5 Conclusion

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 18 / 19



Conclusion

SyVOLT verification tool performs debugging of transformation and contracts in three
stages:

Stage 1: Analysis - dependency information

Stage 2: Monitoring - ensure correct symbolic execution

Stage 3: Reporting - relate contract failure to involved elements

Discussion Questions:

Line between verification and debugging?

Is debugging = observation of behaviour?

How does prevention of errors relate to debugging?

Improvements for debugging visualization?
For verification itself, and development of the verification tool

Thank you!

Debugging of Model Transformations and Contracts in SyVOLT
Bentley James Oakes, Clark Verbrugge, Levi Lúcio, Hans Vangheluwe

Oakes, Verbrugge. Lúcio, Vangheluwe Debugging in SyVOLT 19 / 19


	Verification Activity
	Debugging Stage 1: Analysis
	Debugging Stage 2: Monitoring
	Debugging Stage 3: Reporting
	Conclusion

