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Abstract. Co-simulation is a powerful technique for performing full-system sim-
ulation. Multiple black-box models and their simulators are combined together to
provide the behaviour for a full system. However, the black-box nature of co-
simulation and potentially infinite configuration space means that configuration
of co-simulations is a challenging problem for today’s practitioners.
Our previous work on co-simulation configuration operated on the notion of hints,
which allow system engineers to encode their knowledge and insights about the
system. These hints, combined with state-of-the-art best practices, can then be
used to semi-automatically configure the co-simulation.
We summarize our previous hint-based configuration work here, and explore the
challenging problem of scheduling co-simulations which contain algebraic loops.
Solving or “breaking” these loops is required for scheduling, yet this breaking
process can induce errors in the co-simulation. This work formalizes this schedul-
ing problem, presents our insights gained about the problem, and details an op-
timal search algorithm as well as greedy scheduling algorithms. These heuristic
algorithms are evaluated on (synthetic) co-simulation scenarios to determine their
relative speedup and optimality.

1 Introduction

Cyber-Physical Systems (CPS) marry the complexities of software with the re-
alities of the physical world [24], and are becoming essential systems in today’s
world. For example, an airplane or self-driving car relies on safety-critical com-
munication between sensors, controller software, and actuators. A large driver
in the complexity of CPS is that their analysis spans multiple domains. Simulat-
ing these therefore requires integrating heterogeneous models. For example, the
integration of multi-body system models with communication network models.
The technique of co-simulation is designed to combine multiple co-simulation
units (simulators, each with their own model), in order to compute the behavior
of the combined models over time [16, 23]. Each unit has its own interface for
getting/setting inputs and outputs, and for computing the behaviour of its model
over a given interval of time. An example of such an interface is the Functional
Mockup Interface (FMI) Standard [7,10]. A master algorithm is then responsible
for scheduling the execution and communication of each co-simulation unit.
Co-simulation is therefore very promising for representing: a) systems assembled
from models in various domains, each with their own most appropriate simulator,
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and b) black-box models which hide internal details, allowing third-party units to
be integrated together, as happens in supplier-integrator relationships in industry.
These key benefits have led to multiple modeling and simulation tools allowing
the import and export of units implementing the FMI Standard [9], and a wide
variety of applications [16].
However, it can be difficult to ensure that the results produced by a co-simulation
can be trusted. This is due to not only the black box nature of units, but also
to the many ways in which a co-simulation can be computed (i.e., communica-
tion frequency between differential-equation-based units, event propagation or-
der, etc. . . ). The correct configuration of a co-simulation also depends on the nu-
merical properties of the participating units. This challenge is aggravated when
units themselves may be modified as part of an optimization loop (e.g., design
space exploration) and/or impact analysis of sub-model refinements, because the
co-simulation user may be unaware of how to account for these modifications in
the master algorithm.

Prior Work. Our earlier work [18] focused on the core challenge that users do
not always know how to configure the co-simulation [25]. To tackle this, we pro-
posed a method, and a tool called HintCO which is summarized in Section 2 and
available online [13]. In this tool, a user or engineer can write “hints” about the
co-simulation and involved units. HintCO then applies state of the art heuristics
to configure and run multiple promising co-simulations. This is similar to design-
space exploration techniques [28, 30]. This approach works well in practice be-
cause users usually can tell what properties a correctly configured co-simulation
should satisfy. This is demonstrated by an industrial case study in [18], where
state of the art co-simulation algorithms failed to produce expected ‘smooth’
(non-oscillatory) results. After specifying a few hints, the top candidate results
produced by HintCO were smooth.

Motivation. One limitation of HintCO was the assumption that the co-simulation
unit couplings do not form algebraic loops, as explained in Section 3. However,
when differential-algebraic-equation-based units are coupled, algebraic loops can
be formed [1]. The ideal technique to solve algebraic loops in co-simulations
is fixed point iteration (see, e.g., [15, Section 4] and [26]). However, this tech-
nique requires that units support state rollback, which is an optional feature of
the FMI standard and is therefore seldom implemented currently. Therefore, the
most common technique is to “break” the algebraic loop by employing extrap-
olations in one (or more) variables in the loop [3, 5]. Naturally, variables have
different dynamics, hence, care must be taken when choosing the variables to
break the loop [19].
Our prior work [18] naı̈vely generates all possible ways in which algebraic loops
can be broken, without regard for the dynamics of the variables involved. In the
current work, we build on [19] to formalize the problem of breaking algebraic
loops in co-simulations, and propose an optimal algorithm to solve it, plus a few
cost-effective approximation algorithms.

Contributions. Our contributions in this paper are: a) a formalization of the
problem of breaking algebraic loops in co-simulations, b) an optimal, but costly,
algorithm to solve it, and c) multiple cost-effective heuristic algorithms.
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1.1 Paper Layout

The next section (Section 2) will provide a brief introduction to the HintCO
framework, including the hints and how they shape the search space for find-
ing a correct co-simulation master algorithm. While HintCO has been shown to
be effective for an industrial case [18], in Section 3 we demonstrate an example
with an algebraic loop, where the previous version of the HintCO framework was
unable to efficiently schedule this co-simulation.
Section 4 formalizes the essential components of our approach. We introduce co-
simulation and its involved concepts, as well as the background for our improved
approaches to co-simulation scheduling. The concrete problem of scheduling co-
simulations in the presence of algebraic loops is formalized in Section 5 and a
optimal yet costly algorithm is provided.
Candidate greedy algorithms for scheduling co-simulations with algebraic loops
are presented in Section 6, and evaluated on synthetic examples in Section 7.
Following this, Section 8 will discuss related work in the field and compare our
approach to past approaches. Finally, we conclude in Section 9 with a summary
of our research and the steps to extend our framework further.

2 HintCO Framework

This section briefly introduces relevant aspects of the HintCO framework, such
that the importance of the contributions made in this paper to the automated con-
figuration of co-simulations can be appreciated. In particular, this section adapts
text from [18] to briefly describe the problem statement tackled by the HintCO
framework and the elements of the HintCO workflow. This includes exemplifying
some of hints the user can state about a co-simulation, and a description of the
process for generating candidate configurations for co-simulations.

2.1 The Configuration Problem

As described in [18] and explored in-depth in the thesis of Gomes [14], it can be
challenging to configure a co-simulation which satisfies properties to the same
degree as the original system. This is due to the inherent approximation of the
original system’s behaviour trace by the co-simulation’s behaviour trace, and due
to the many possible manners in which a co-simulation can be computed.
Assuming that co-simulation units are correctly implemented, the configuration
problem can be stated as: given a set of co-simulation units and their intercon-
nections, and a set of properties that the coupled system should satisfy, find the
master algorithm that produces co-simulation results satisfying those properties
(Problem 1 in [18]).
Since the correct co-simulation configuration is not available as our reference
oracle, we are forced to rely on the user’s hints as a proxy for the correct set
of properties to satisfy. This assumption of hint correctness is quite strong, but
allows us to guide the search for a correct co-simulation configuration based on a
mapping from these hints to state-of-the-art configuration techniques.
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2.2 Workflow

HintCO has four main components, briefly introduced here as part of the HintCO
workflow:
a) HintCO Hint Language The user first specifies hints about the system by

selecting and configuring built-in hints relevant to the domain of the units
involved.

b) Generation of Candidate Master Algorithms HintCO automatically gener-
ates candidate co-simulation configurations based on those hints. This is per-
formed by translating those hints into adaptations on the configurations, us-
ing state-of-the-art heuristics.

c) Scheduling the Co-simulation A co-simulation schedule is then generated
for each candidate configuration using the techniques described in this paper.

d) Execution of the Co-simulation Finally, the co-simulation variants are exe-
cuted in a ranked order (as determined by the hints) and the results presented
to the user for inspection.

2.3 Hints

Hints are defined in a small domain-specific language (DSL). DSLs allow experts
in the problem space (the system engineers) to describe hints, without having to
become experts in the solution space (the co-simulation domain) [29].
As an example, Figure 1 shows the hints exemplified in [18]. The first hint speci-
fies the frequency of a unit, which is useful to find a communication rate between
units, and determines whether a unit represents a time triggered software con-
troller. The second hint defines a power-bond, which declares that energy should
not be lost or gained in the communication between two units.

Fig. 1: The ExecRate and PowerBond hints.

Each hint has a number of fields. The description field is for unstructured text,
as is commonly seen in industrial requirements. Following this are statements,
which can be events or properties. Finally, scopes and patterns specify when
the hint is valid. These scopes and patterns have been sourced from [2] and have
been utilized for verification of safety-critical automotive requirements in another
domain of our work [6].
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2.4 Generating a Configuration Search Space

As will be detailed later in Definition 7, a co-simulation configuration (or master
algorithm) has three dimensions in our formalization:

– the rate at which co-simulation units execute;
– the concrete operations or execution order of those units;
– the semantic adaptations (described below) applied to the co-simulation units.

It is not feasible to explore all possible configurations, so the hints are used as a
way to build a finite ranked list of possible candidate configurations.
Semantic adaptations are a technique to create a new co-simulation unit by wrap-
ping the old units [17] (also see Definition 4), thereby changing it’s behavior
when inputs are provided, when output are requested, or when time stepping is
performed. Some example semantic adaptations are:
Extrapolation/Interpolation Applies the approximation to the input port.
Multi-rate Adapt a co-simulation unit to perform multiple executions per one

larger co-simulation step.
Power-bond Whenever two units share a power connection, one of the input

ports will correct for the energy dissipated using the technique from [4].
XOR Is combined with other adaptations to represent alternative configurations.
The following exemplifies a search space.

Example 1. Figure 2a shows the configuration space used in [18]. Possible adap-
tations are shown on each co-simulation unit and port: the Load and Plant co-
simulation units have a PowerBond adaptation on the v and f ports, and the
Environment unit has an XorAdaptation with two alternative multi-rate adap-
tations.
This space represents four alternative master algorithms, because of the two pos-
sible rates for the Environment unit. These adaptations are represented in the
figure as the execution rate R = {100,10}, and two possible communication step
sizes H =

{
1×10−7,1×10−6}.
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(a) Possible adaptations.

Root

H=1e-7 H=1e-6
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(b) Variant diagram.

Fig. 2: Case study introduced in [18].

The key operation of the HintCO framework is to transform the user’s hints into
semantic adaptations, as exemplified in Figure 2a. This is described in [18, Pro-
cedure 1].
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Having a configuration space, HintCO then generates a variant diagram, as exem-
plified in Figure 2b. This diagram reflects the weighting of the variants as defined
by the hints, and each path from root to leave node represents a co-simulation
configuration (a variant). HintCO employs a weighted depth-first search to tra-
verse this tree and generate the variants for scheduling and execution.
For example, in Figure 2b, the search will first select the adaptations of H =
1×10−7 for the step-size and then R = 100 for the Environment unit rate, due
to the highest weight. The user can opt for generate all variants, or only the top n.

2.5 Scheduling and Execution

To properly configure a co-simulation, HintCO must take a variant, and define
a concrete operation schedule for how the co-simulation units in the scenario
are executed and how values are passed between units. Operation schedules and
their creation are further explored in Section 4.2. This schedule must comply
with the requirements imposed by the adaptations chosen in the variant. These
requirements refer to the order in which: inputs can be set; outputs computed;
and time advancement operations performed. Thus, the schedule can be different
for different variants.

Topological Order:

Fig. 3: Example operation schedule for the co-simulation scenario in Figure 2a [18].

Figure 3 demonstrates an example of an operation schedule for the co-simulation
scenario in Figure 2a, as replicated from [18]. The left-hand side of the figure de-
fines the dependencies of function calls, as given by the interaction between the
variant’s adaptations and rules defining a valid co-simulation configuration (Defi-
nition 9). The right-hand side of the figure depicts a schedule of those operations,
as given by a topological ordering of the dependencies.
The execution of the variants by HintCO is performed behind-the-scenes by the
tool, based on the concrete operation schedule automatically produced. The user
receives the co-simulation traces for each variant and can decide whether to con-
tinue with the variant tree search or not. In this way, the variant tree generation
and the scheduling process are hidden to reduce complexity for the system engi-
neer.
An example trace for the Load co-simulation unit from Figure 2a is shown on the
left-hand side of Figure 4 before applying the hints and adaptation. The smoothed
results on the right-hand side of Figure 4 are the result of the top variant, demon-
strating how HintCO can assist in configuring co-simulations.
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Fig. 4: Load signal before and after HintCO adaptations are applied [18].

3 Motivating Example

This example motivates our current work regarding scheduling, as the input/out-
put relationships of the units in the co-simulation form a dependency loop. This
is termed as an algebraic loop.
The version of HintCO proposed in [18] could produce an operation schedule in
the presence of algebraic loops, but HintCO would not consider the dynamics of
each connection in deciding which dependency was the least important and could
be removed to break the algebraic loop. As discussed in [19] and Section 5.3, a
lower co-simulation error can be achieved by choosing a more appropriate point
to break the loop.

3.1 Example Description

Fig. 5: Example co-simulation network with algebraic loops.

The notion which leads to algebraic loops is feed-through (formalized in Defi-
nition 5), where the output of a co-simulation unit algebraically depends on its
inputs. That is, when the input value of a unit is modified, the connected output
value immediately changes, without the unit executing.
Figure 5 shows an co-simulation scenario from [19]. Feed-through is represented
in Figure 5 by the dashed arrows within the co-simulation units.
For this motivating example, we consider the case where the user does not pro-
vide sufficient hints for HintCO to break the feed-through dependency loops. If a
dependency graph (such as Figure 3) was generated by HintCO, the function calls
of these units would produce a graph with a cycle. Then, HintCO would have to
make a decision about the best dependency to break.
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In the previous version of HintCO, this decision was performed without consid-
ering the dynamics of the connections. The current work attempts to formalize
this problem and present exact and heuristic solutions, such that HintCO can be
improved to better schedule these co-simulation scenarios.

4 Formalization of Co-simulation Concepts

This section formalizes the key concepts involved in co-simulation configuration,
in a refinement of those presented in our earlier work [18]. In particular, we re-
call definitions for co-simulation units and co-simulation configuration. These
formalizations are required to support Section 5 which details the problem of
co-simulation scheduling in the presence of algebraic loops.

4.1 Co-simulation Units and Relevant Characteristics

The following definitions focus on the concepts of a co-simulation unit and the
relevant characteristics which affect co-simulation behaviour. As with our ear-
lier formalization [18], we consider general co-simulation units in our scheduling
approach. This notion of co-simulation unit is inspired by and includes the Func-
tional Mockup Units (FMUs). As in our earlier work [18], we follow the notations
introduced in [8] and omit the details of initialization.

Definition 1 (Co-simulation Unit). [18, Definition 3]
A co-simulation unit with identifier c is a structure
〈Sc,Uc,Yc,Rc,setc,getc,doStepc〉 , where:

– Sc represents the state space;
– Uc and Yc the set of input and output variables, respectively;
– Rc : Uc→{true, false} the reactivity of each input (see Definition 3);
– Dc ⊆Uc×Yc the set of input/output feed-through dependencies (see Defini-

tion 5);
– setc : Sc×Uc×V → Sc and getc : Sc×Yc → V are functions to set the

inputs and get the outputs, respectively (we abstract the set of values that
each input/output variable can take as V ); and

– doStepc : Sc×R≥0→ Sc is a function that instructs the co-simulation unit
to compute its state after a given time duration.

When configuring co-simulations, it is crucial to reason about the current time of
each co-simulation unit. The following definition defines the state timestamp for
each unit, which the FMI Standard leaves implicit.

Definition 2 (State Timestamp). [18, Definition 4]
Given a communication step size H ∈R≥0 and H > 0, we say that the state sc ∈ Sc
of an co-simulation unit c has timestamp t, denoted as ϕ(sc) = t when doStepc
has been called t

H times with H as parameter.

Definition 2 implies that if a co-simulation unit is in state sc at time t, then
doStepc(sc,H) will approximate the state at time t +H. If the corresponding
model is a continuous one, then an approximation function will be used to esti-
mate the values of the inputs in the interval [t, t +H].
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Input Approximation Functions There are two relevant approximation func-
tions we focus on. There can be an extrapolation on an input, where the value of
a input is calculated forward from the last received value. Otherwise there can
be an interpolation, where an intermediate value is calculated between the last
received value and a value from the sending unit at either the current timestamp,
or a (relative) future timestamp.
Assumptions can be made about relating these these approximation functions to
the behaviour of co-simulation units. For example, as mentioned in Section 2 the
user can provide a hint that an co-simulation unit represents a software controller.
As software controllers rely on data from sampled sensors, the software con-
trollers assume that their input readings are not from a future timestamp. There-
fore, it can be inferred that a software controller is using an extrapolation approx-
imation function.
As interpolations can only be employed when the sending unit can already calcu-
lated the value, the choice of scheduling of co-simulation units can also impact
which approximation can be used. The interpolation/extrapolation choice also
affects the error of the system, as discussed in Section 5.3. Extrapolations can in-
duce more error in the co-simulation [19], but can be employed to break algebraic
loops as the dependency between units in the same timestep is then removed.
In our notation, we choose to leave the approximation function implicit in the
doStepc, as reflected in version 2.0 of the FMI Standard. However, we make
explicit the requirements of each kind of input approximation in the form of the
reactivity Rc.
Intuitively, a co-simulation unit c with a reactive input [16] must wait until the
co-simulation unit d, which feeds that input to c, executes a step. Then, c may
receive that input value.

Definition 3 (Reactivity). [18, Definition 5]
For a given co-simulation unit c with input u ∈Uc, Rc(u) = true if the function
doStepc makes use of an interpolation of input u.
Let t be the timestamp of the state sc prior to a call to doStepc(sc,H), and let d
denote the co-simulation unit whose output y ∈ Yd is connected to u.
Then, Rc(u) = true means that sc must have been produced from a call to
setc

(
. . . ,u,getd(sd ,y)

)
where the state sd of co-simulation unit d satisfies

ϕ(sd) = t +H.
Conversely, Rc(u) = false means that sc must have been produced from a call to
setc

(
. . . ,u,getd(sd ,y)

)
where ϕ(sd) = t.

As the FMI Standard version 2.0 does not include information about reactivity,
we make the following assumption for all co-simulation units:

Assumption 1 If an co-simulation unit c does not disclose its input approxima-
tion scheme for an input u, then we assume that u is approximated with a constant
extrapolation. Therefore, Rc(u) = false.

We employ the technique of semantic adaptation, introduced in Section 2.4 to
control the input approximation scheme and reactivity for co-simulation units.

Definition 4 (Semantic Adapation). [18, Definition 2]
Semantic adaptation is a technique that allows a new co-simulation unit c to be
constructed from a set of co-simulation units, using a custom implementation of
the setc,getc, and doStepc functions [17].
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Feed-through The concept of feed-through is crucial for the current work. If a
co-simulation unit has feed-through, then an output value of a co-simulation unit
is a function of the input.

Definition 5 (Feed-through). The input u ∈ Uc of co-simulation unit c feeds-
through to output y ∈Yc, that is, (u,y) ∈Dc, when there exists two values v1,v2 ∈
V and some state sc ∈ Sc, such that

getc(setc(sc,u,v1),y) 6= getc(setc(sc,u,v2),y).

This means that the value of y obtained with getc is an algebraic function of the
value set for u. Hence, getc should be called to get the value of y only after setc
has been called to set the value of u, before doStepc is invoked.

Co-simulation units with feed-through will immediately change output values
when the corresponding input value changes, even without the co-simulation unit
executing a time-step. It is this ‘instant’ change which can form algebraic loops
when multiple co-simulation units have feed-through, as in the motivating exam-
ple in Section 3.

4.2 Co-simulation Scenario and Master Algorithms

A co-simulation scenario is a collection of co-simulation units and the input/out-
put connections between them. An example of a co-simulation scenario with four
co-simulation units and six connections is shown in Figure 5 on page 7.

Definition 6 (Co-simulation Scenario). [18, Definition 7]
A co-simulation scenario is a structure 〈C,L〉where each co-simulation unit iden-
tifier c ∈ C is associated with an co-simulation unit, as defined in Definition 1,
and L(u) = y means that the output y is connected to input u. Let U =

⋃
c∈C Uc

and Y =
⋃

c∈C Yc, then L : U → Y .

Master Algorithms A master algorithm is the configuration to compute the
behaviour of a co-simulation scenario. As stated in Definition 7, a master algo-
rithm combines the co-simulation scenario, the step size, and a scheduling se-
quence for the scenario. As described previously in Section 2.4, our approach is
to guide a search through the variation of these parameters, which each induce a
different co-simulation behaviour.

Definition 7 (Master Algorithm). [18, Definition 10]
Given a co-simulation scenario 〈C,L〉, a step size H, and an operation schedule
( f )i∈N, a master algorithm is a structure defined as A =

〈
C,L,H,( f )i∈N

〉
.

Co-simulation Step The execution of a master algorithm A =
〈
C,L,H,( f )i∈N

〉
is thus the application of the operation schedule on the co-simulation scenario.
One application of this sequence is a co-simulation step. Precisely, executing this
schedule in a co-simulation scenario 〈C,L〉 where all co-simulation units c ∈ C
have a state sc satisfying ϕ(sc) = t, will update each co-simulation unit’s state sc
to satisfy ϕ(sc) = t +H, where H is the argument of every call to doStep. Re-
peated co-simulation steps thus advance the state of the co-simulation scenario,
producing a co-simulation behaviour trace.
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Readers may note that the definition of operation schedule provided in Defini-
tion 8 was referred to as a co-simulation step in [18]. This redefinition was per-
formed in order to allow the co-simulation step concept to also refer to the exe-
cution of a trigger sequence of co-simulation units, which is further described in
Section 5.1.
This presentation omits the handling of hierarchical co-simulation units, which
themselves contain a co-simulation scenario. However, this is accounted for in
our treatment, as we consider the sub-scenario to execute whenever the hierar-
chical co-simulation unit itself executes. Thus, we create the schedule for the
top-level elements separately from the schedule for each individual hierarchical
co-simulation unit.

Operation Schedules In Definition 7 a master algorithm contains an operation
schedule. This operation schedule represents the sequence of function execution
for each co-simulation unit in the scenario. That is, the sequence of operations
get, set, doStep) which are executed on each port of each co-simulation unit.
We formalize this operation schedule concept in Definition 8.

Definition 8 (Operation Schedule). [Modified from Definition 8 of [18]]
Given a co-simulation scenario 〈C,L〉, an operation schedule is an ordered se-
quence of co-simulation unit function calls ( f )i∈N with

f ∈ F =
⋃
c∈C

{setc,getc,doStepc} ,

and i denoting the order of the function call. A function call fi comes before
a function call f j, written as fi � f j, if i < j, and comes immediately before,
written as fi→ f j, if i = j−1.

Definition 9 states the restrictions on a well-formed master algorithm, and how
the hints provided to HintCO affect this schedule. For example, if an input is reac-
tive (it performs an interpolation approximation - Definition 3), then that input’s
get step must occur after the doStep of the preceding co-simulation unit.

Definition 9 (Valid Master Algorithm). [Modified from Definition 9 of [18]]
A master algorithm is valid with respect to reactivity and the co-simulation sce-
nario couplings if it satisfies the following conditions:

1. A co-simulation step size H > 0.
2. Each function call uses the most recent co-simulation unit state as parameter.

For example, if f j = getc(sc,y) then sc must be the result of the most recent
call to setc or doStepc, that is, the maximal i such that i < j, and fi =
setc(. . .) or fi = doStepc(. . .).

3. For every c ∈ C, there exists one, and only one, call to doStepc, and it is
done with argument H.

4. Each call to doStepc for c ∈ C must come after every call to setc on the
input variables of c.

5. Each call to get is immediately followed by a sequence of calls to set to
set the affected input variables.

6. For each c ∈C and (u,y) ∈ Dc, any call to getc(y, . . .) must be preceded by
a call to setc(. . . ,u) without any call to doStepc in between.
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7. For each c∈C and u∈Uc satisfying Rc(u)= true, doStepd � getd(L(u), . . .),
where L(u) ∈ Yd and d ∈C.

8. For each c∈C and u∈Uc satisfying Rc(u) = false, setc(. . . ,u)� doStepd ,
where L(u) ∈ Yd and d ∈C.

Remark 1. Regarding Definition 9:
– The most common master algorithms will satisfy conditions 2–4;
– Condition 5 is not mandatory but it facilitates the description of Conditions

7 and 8. Furthermore, it makes the implementation simpler.
– Conditions 7 and 8 ensure that the reactivity of each input is respected, ac-

cording to Definition 3.
• If Rc(u) = true, then the input approximation is interpolated, and the

preceding co-simulation unit must perform doStep before the get call
• If Rc(u) = false, then the input approximation is extrapolated, and the

set call is performed before the preceding co-simulation unit performs
doStep

Generating an Operation Schedule A particular variant co-simulation con-
figuration (discussed in Section 2.4) could define interpolation or extrapolation
adaptations on co-simulation units or their input ports. These adaptations interact
with the rules defined in Definition 9, which specify the dependencies between
the function calls in the operation schedule. This then induces a dependency graph
of the function calls in the co-simulation scenario. An example of these ordering
dependencies is demonstrated on the left-hand side of Figure 3 on page 3. In this
dependency graph, the operation at the tail of an edge must be executed before
the operation at the head of an edge.
The dependency graph in Figure 3 does not contain any cycles, due to the lack of
feed-through in the co-simulation scenario (shown in Figure 2a). A topological
sort is therefore sufficient to generate an operation schedule to execute the co-
simulation units, as seen on the right-hand side of Figure 3.
This operation schedule approach allows for a great deal of flexibility in the con-
crete order of operations, as all topological orderings are considered to be be-
haviourally equivalent. A Prolog-based algorithm for specifying co-simulation
scenarios and determining a valid operation schedule is presented in [12].
However, if cycles are present in this dependency graph (as in the motivating
example in Section 3), the cycle will need to be broken to produce an opera-
tion schedule. As this cycle breaking produces errors (due to the extrapolation
approximation used), an optimization approach is required to determine the best
scheduling, as discussed in the following sections.

5 Scheduling with Algebraic Loops

This section will detail our approach to scheduling co-simulation scenarios with
algebraic loops. This approach is based on co-simulation trigger sequences, which
are an intuitive scheduling of co-simulation units at a high level. We also present
how trigger sequence can be transformed into operation schedules to be executed
by HintCO. Third, the cost function for a trigger sequence is defined, determined
by the connections within the co-simulation scenario. Finally, we discuss a di-
rected search approach to calculating the optimal trigger sequence.
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5.1 Trigger Sequences

As described in Section 4.2, execution of a co-simulation scenario requires the
production of an operation schedule, which details the precise sequence of func-
tion calls within the scenario. However, another (possibly more intuitive and more
elegant) approach is to define a trigger sequence for the co-simulation scenario,
as is done in [19]. Following this trigger sequence, each co-simulation unit would
be visited and executed in turn, with input and output approximation and propa-
gation handled as required.
The motivation for defining and utilizing trigger sequences is therefore to con-
sider co-simulation scenarios at an abstract level. The presence of algebraic loops
leads to a ‘strong component’ notion, where co-simulation units must be reasoned
about as one entity. In particular, the problem statement in Section 5.3 deals with
co-simulation units, not their individual function calls.

Example and Definition Consider the motivating example co-simulation sce-
nario in Figure 5, which contains four co-simulation units S1, S2, S3, and S4.
There are 24 different permutations of these units, and therefore 24 possible trig-
ger sequences (Definition 10) can be created, such as {S1, S2, S3, S4} or {S2,
S4, S3, S1}.

Definition 10 (Trigger Sequence). Given a co-simulation scenario 〈C,L〉, trig-
ger sequence is an ordered sequence of co-simulation unit executions (ci) with
c ∈C and i denoting the order of the co-simulation unit execution.

5.2 Transformation to Operation Schedule

The definition of a master algorithm in Definition 7 contains a schedule of func-
tion calls on the co-simulation units. Therefore, a transformation from a trigger
sequence to an operation schedule is required for co-simulation execution.
This transformation must respect the constraints defined in Definition 9 for a valid
master algorithm. In particular, condition 5 must be followed, in which each call
to get an output is immediately followed by a call to set for the associated input.
A trigger sequence is thus transformed into an operation schedule by Procedure 1.

Procedure 1 Produce an operation schedule from a given trigger sequence:
– For each co-simulation unit c in the trigger sequence:
• Add the appropriate get and set calls for each input of c to the oper-

ation schedule.
• Add extrapolation adaptations to co-simulation unit inputs where re-

quired (see Section 5.3)
• Add the doStep call for c to the operation schedule.

For example, Example 2 presents the operation schedule for the trigger sequence
{S2, S1, S3, S4} for the co-simulation scenario in Figure 5.

Example 2. {getY 11,setU21,doStepS2, getY 42,setU11,doStepS1,
getY 21,setU31,getY 41,setU32,doStepS3,
getY 31,setU41,getY 12,setU42,doStepS4}
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5.3 Problem Statement

As presented in Section 3, our motivating example contains feed-through of in-
puts and outputs arranged in a cycle. This implies that the dependency graph for
operations (as in Figure 3) would also have a cycle.
Section 5.4 will answer the important question of how the above trigger sequence
{S2, S1, S3, S4} was created for this co-simulation scenario, despite the cyclic
dependency. However, we first focus on what impact the breaking of the algebraic
loop has on our co-simulation results.
The scheduling of the co-simulation trigger sequence can impact the results of the
co-simulation, as seen in related work [19]. This is due to the presence of input
approximation algorithms used in the co-simulation, as discussed in Section 4.1.
Recall that interpolation algorithms may interpolate input values between the pre-
vious time step and the next one. This (may) reduce error compared to extrapo-
lations, but interpolations are only available to use on a co-simulation unit when
the preceding unit has already executed. That is, any co-simulation unit ci in a
trigger sequence can interpolate values from co-simulation units c j<i, and must
extrapolate the values from co-simulation units ck>i.
Holzinger and Benedikt [19] take these considerations into account and produce
a trigger sequence which minimizes the number of extrapolations performed to
reduce error. However, their technique is based on a Travelling Salesman Problem
approach, which can be computationally expensive. Instead, Section 5.4 presents
a directed search algorithm, and Section 6 explores heuristic algorithms to per-
form this scheduling.
Therefore, the problem statement considered in the following sections is: given a
co-simulation scenario, what is the trigger sequence with a minimum cost, where
this cost represents performing extrapolations of co-simulation unit inputs?
The following sections investigate trigger sequence creation and define this cost
function.

5.4 Trigger Sequence Creation

This section will detail how a trigger sequence can be constructed from a co-
simulation scenario. First, we describe a scenario graph to intuitively represent
the co-simulation units in a scenario and a measure of the dependency strength
of their connections. Second, we detail how this graph is used to build a trig-
ger sequence. Finally, a directed search approach for finding an optimal trigger
sequence is presented.

Scenario Graph A scenario graph represents the necessary information from a
co-simulation scenario to define a trigger sequence. Vertices in this scenario graph
represent each co-simulation unit in the scenario. Edges are weighted, directed,
and connect vertices which are connected in the original co-simulation scenario.
An example co-simulation scenario graph is shown in Figure 6a. Not shown in
this example is that each edge in this scenario graph could represent more than
one co-simulation connection in the original scenario. The weight of the edges
represent a measure of the interdependence of the units in the original scenario,
such as a count of the number of connections. More advanced analysis are pos-
sible to represent a more nuanced calculation of sensitivity of the connection, as
in [19].
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In our formulation of the scenario graph, which follows [19], the weight of each
edge represents the cost for performing an extrapolation approximation on the
input/output connections in the original co-simulation scenario, which are repre-
sented by that edge. This weight can be set through hints from the user, though
we are exploring automated determination of costs.
Selecting the weight of an edge must also take into account any interpolation or
extrapolation information provided by hints on the scenario. That is, the variant
generation described in Section 2 may determine the approximation for certain
co-simulation unit inputs. This sets the weight of the relevant edge to zero, as the
hint suggests that the co-simulation unit is constructed to appropriately handle
the resulting approximation error.

Trigger Sequence Cost Function Following the definition of the co-sim-
ulation graph above, building a trigger sequence involves selection of the co-
simulation units to execute, taking into account the weights of the edges between
them.
For example, consider the situation where the A unit in Figure 6a is executed
first in a trigger sequence. Both the inputs from B and the inputs from C must be
extrapolated, for a summed cost of eight.

(a) Scenario graph. (b) Directed search tree.

Fig. 6: An example scenario graph and a directed search tree for the optimal trigger
sequence.

The real complication in determining the optimal trigger sequence arises in that
scheduling the execution of a co-simulation sets the costs of outgoing edges of
that unit to zero. That is, co-simulation units on outgoing edges will not be forced
to extrapolate the output, but instead can rely on interpolation, which is beneficial
to the error of co-simulation [19].
As an example, consider the co-simulation graph in Figure 6a. Each of the six
possible trigger sequences for the co-simulation scenario has a different cost
given by this interpretation. If co-simulation unit B is selected for execution in
the trigger sequence first, the cost will be four due to the weight of the edge from
A. However, the weight on the edge from B to C will then be zero, as C can now
interpolate the output value of B.
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Cost Equation The following equation defines the cost function for a trigger
sequence, in a reformulation of the cost equation found in [19]. Informally, each
node is considered and incoming weights from nodes not yet encountered in the
trigger sequence are summed.
Let G = (V,E) denote the scenario graph, where E ⊆ V ×V ×R denotes the
(positively-)weighted edge set. Given a trigger sequence v0,v1, . . . ,vn, with dis-
tinct v’s, n = |V |, and vi ∈V for all i = 0, . . . ,n, its cost is:

c(v0,v1, . . . ,vn) =
n−1

∑
i=0

n

∑
j=i+1

w(v j,vi)

w(u,v) =

{
x if (u,v,x) ∈ E
0 otherwise.

(1)

An alternative formulation to the above would be to sum up the incoming edge
weights for each node, and then subtract the outgoing edge weights for those
nodes not yet visited.
As an example, consider two trigger sequences {B,C,A} and {A,B,C} for the
scenario graph in Figure 6a. The total cost for these trigger sequences is provided
in Example 3.

Example 3.
Trigger Sequence: {B,C,A}
Cost: B = 4, C = 3, A = 0
Total: 7 (optimal)

Trigger Sequence: {A,B,C}
Cost: A = 8, B = 0, C = 0
Total: 8

Directed Search Given Equation (1) for defining the cost of a trigger sequence,
an brute-force algorithm can be easily created: a) all possible trigger sequences
are created, b) each is evaluated using Equation (1), c) the sequence with the low-
est cost is the optimal one. However, this brute-force approach is computationally
infeasible, as the number of possible trigger sequences is a factorial explosion of
the number of co-simulation units.
A directed search is instead preferable to find the optimal solution. This directed
search builds up a tree of possible sequences, selecting the next branch to expand
based on the cost of the branch so far. This search is possible because the cost
function is defined for partial trigger sequences, and is consistent as well. That
is, adding further nodes to a trigger sequence can only maintain or raise the total
cost, so there cannot be a local maxima reached in the search.
The directed search begins with the root of the tree as the empty set /0. Then in
an iterative manner the branch with the lowest cost is expanded, by adding as
children all those nodes not considered yet in that branch of the tree.
For example, Figure 6b demonstrates the final search tree for the scenario graph
in Figure 6a. The layer just below the root in Figure 6b considers the execution of
each node individually. As partial sequence {B} has the lowest cost, it would be
expanded next. Those children ({B, A} and {B, C}) have a higher cost than {C},
so the {C} branch is expanded next into {C, A} and {C, B}. The search returns
to {B, C}, which is expanded into {B, C, A} (bolded in Figure 6b) which is the
optimal solution with a cost of seven.
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This directed search provides the optimal solution, but could be exhaustive and
therefore computationally prohibitive. The next section presents the Travelling
Salesman and optimal branching approaches, along with heuristic algorithms to
find a trigger sequence with near-optimality but at lower computational complex-
ity.

6 Approaches for Constructing Trigger Sequences

This section details approaches for producing a trigger sequence with the lowest
cost (as defined by Equation (1)), while avoiding the computational complexity
of the directed search approach described in Section 5.4. Each proposed approach
will be presented along with a discussion, including counter-examples if known.

6.1 Travelling Salesman Problem

The Travelling Salesman Problem approach to trigger sequence construction is
to find a walk (or Hamiltonian cycle) which visits each unit in the scenario graph
once. While this approach is intuitive, as one can think of execution as ‘walking’
around the scenario graph, this approach is overly restrictive and computationally
expensive.
First, the trigger sequence to be produced does not have to be a cycle, nor is it
required that co-simulation units which are next to each other in the trigger se-
quence have to be directly connected in the scenario graph. For instance, consider
a scenario graph with three nodes A, B, and C, where A and B are connected to
each other, and B and C are connected to each other. Clearly there cannot exist
a cycle that visits every unit exactly once. Therefore, Hamiltonian cycles are not
required for a trigger sequence.
A second issue with the Travelling Salesman Problem approach is that the starting
unit of the cycle must also be selected, which induces another optimization prob-
lem. For example, assume that a Travelling Salesman algorithm gives the optimal
solution for the scenario graph in Figure 6a, which is executing B, C, and then A
for a total cost of seven. However, this cannot be treated as a cycle, for while the
trigger sequence {B,C,A} has a total cost of seven, the trigger sequence {A,B,C}
has a total cost of eight due to the extrapolations required.
Based on the above discussion, Travelling Salesman Problem approaches to co-
simulation scheduling are certainly intuitive but are not the correct approach.

6.2 Optimum Branching

Another approach to trigger sequence construction is to determine the optimum
branching for a scenario graph, such as a (minimum) spanning tree. That is, which
set of edges spans the entire graph with minimal cost. This approach is also highly
intuitive, as the optimal solution must have the minimum weight from incoming
edges for each node. However, this approach does not provide the ordering of the
nodes which provides that minimal cost.
For example, consider again the scenario graph from Figure 6a. The optimal
branching is the edges B→A and A→C, with a cost of six. However, it is un-
clear how this minimal tree relates to the optimal trigger sequence of {B,C,A},
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Fig. 7: Second example scenario graph.

which has a cost of seven. Therefore, the minimal spanning tree can provide a
lower bound on the optimal trigger sequence cost, but (currently) cannot be used
to produce this optimal trigger sequence.
From this counter-example, it is clear that while the scheduling problem is related
to an optimum branching problem, it is not sufficient to apply optimal branching
algorithms. This is due to the order of nodes in the trigger sequence affecting the
weights of the edges, which is not the case in standard graph problems.

6.3 Greedy Approaches

As discussed in Section 5.4, a directed search is able to find the optimal trigger
sequence, given enough computational resources. However, it would be beneficial
to have algorithms with lower computational complexity for producing trigger
sequences.
In this section, we present a number of greedy approaches to the trigger sequence
construction problem. We note that these algorithms are not optimal and we do
not provide formal bounds on the relative error to the optimum. However, our
contribution is to provide a selection of algorithms that could be used for schedul-
ing, until future work provides an optimal algorithm (if it exists). These algo-
rithms will be evaluated in Section 7, which provides relative error results of the
algorithms against the optimum on synthetic scenario graphs.
For the below algorithms, we will present examples calculations based on Fig-
ure 6a and Figure 7. These calculations are not intended to prove optimality, but
only to illustrate the operation of the algorithms. As well, differences in imple-
mentation tie-breaking may also affect the results.

Lowest Incoming As a simple greedy algorithm, Lowest Incoming selects the
node from those remaining which has the lowest incoming weights. The intuition
is that the trigger sequence should be built according to choosing the ‘cheapest’
node next.

Algorithm:
– While not all nodes are in the trigger sequence:
• Calculate the node with the lowest sum of incoming edge weights.
• Add that node to the trigger sequence.
• Remove cost for outgoing edges.
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Examples
Scenario Found Sequence Cost Opt. Sequence Cost
Figure 6a {B,C,A} 7 {B,C,A} 7
Figure 7 {H,F,E,G} 5 {F,E,H,G} 4

6.4 Benefit Ratio
The next greedy algorithm we present is Benefit Ratio. In this algorithm, the ratio
between the incoming edge weights and the outgoing edge weights for each node
is calculated such that the node with the highest ‘benefit’ can be selected next. The
ratio is calculated as output weight divided by input weight, and nodes selected
from high ratio to low.
There are two versions of this algorithm which we evaluate here. The first is static
where the benefit ratio is determined at the beginning of the scheduling process.
The second version is dynamic, where the benefit ratio is re-calculated after each
sequence addition, to take into account that the input weights of other nodes are
then reduced.

Algorithm
1. Calculate the benefit ratio for each node.
2. While not all nodes are in the trigger sequence.

– Add the node with the highest benefit ratio.
– If the dynamic version, recalculate the benefit ratios.

Examples for the Static Version
Scenario Ratios Found Sequence Cost Opt. Sequence Cost
Figure 6a A=0.88, B=1.5,

C=0.83
{B,A,C} 9 {B,C,A} 7

Figure 7 E=0.75, F=3, {H,F,E,G} 5 {F,E,H,G} 4
G=0.12, H=10

Edge Avoidance Based on the idea of optimum branching, the Edge Avoidance
greedy algorithm has the intention of ensuring that the most expensive edges in
the graph have their cost reduced to zero. The most expensive edges are selected
such that maximal spanning tree is created and a topological sort gives the trig-
ger sequence. An optimality improvement to this algorithm may be to perform a
brute-force search on all possible topological sorts to find the one with the lowest
cost.

Algorithm
1. Sort the edges in descending order of weight.
2. From each edge from the beginning of that list:

– Connect those nodes, unless doing so would create a cycle.
3. Produce the first possible topological sort.

Examples
Scenario Max. Weight Edges Found Sequence Cost Opt. Sequence Cost
Figure 6a C→ A→ B {C,A,B} 9 {B,C,A} 7
Figure 7 H→ G, F→ G, Five possibilities, - {F,E,H,G} 4

F→ E including optimal
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(a) Calculation effort of each algorithm. (b) Relative error versus the brute-force search.

Fig. 8: Evaluation of the algorithms for both effort and relative error.

7 Algorithm Evaluation

This section will provide evaluations of the brute-force, directed search, and
greedy algorithms presented in Section 5.4 and Section 6. In particular, measures
of relative performance and optimality are discussed to provide insight into their
characteristics.

7.1 Set-up

As we are unaware of a large corpus of co-simulation scenario graphs, synthetic
graphs are studied here. One hundred graphs for each sequence length from one to
ten were created with cycles, and edges were randomly assigned discrete weights
uniformly sampled between zero and nine (inclusive).
For each graph, a brute-force search for the optimal trigger sequence is first per-
formed to set a baseline of the performance and optimal cost. Then, the directed
search (from Section 5.4) is calculated to determine the speedup given. Finally,
each greedy algorithm from Section 6 is ran to determine the (potential) speedup
and cost provided. The calculation effort is given in seconds, as determined by
a Python 3.7.3 script running on Xubuntu 19.10 with a Intel i7-8850H CPU at
2.60GHz.

7.2 Results and Discussion

Figure 8 provides an overview of the algorithm evaluations. Figure 8a presents
the average of calculation time (in a log scale) for each algorithm over all graphs
of a certain size. Figure 8b presents the relative error of each algorithm versus
the optimal given by the brute-force approach. The relative error is calculated by
taking the difference between the cost and the optimal cost, then dividing by the
optimal cost. A relative error of 0.10 therefore means the cost is 10 percent worse
than the optimal. Figure 9 provides more details by presenting boxplots for each
algorithm’s relative error.
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(a) Lowest Incoming. (b) Edge Avoidance.

(c) Static Benefit Ratio. (d) Dynamic Benefit Ratio.

Fig. 9: Detailed relative error of each algorithm.

Concerning computation time, it was expected that the directed search algorithm
would be less expensive than the brute-force search. However, the results in Fig-
ure 8a show that the improvement is not as great as expected. The high cost of the
Edge Avoidance algorithm was also unanticipated, as it is similar in cost to the
directed search, but is not likely to always produce an optimal result. However,
the other three algorithms show a definite cost improvement over the brute-force
and Directed Search approaches.
The relative error of the algorithms versus the brute-force search shown in Fig-
ure 8b and Figure 9 provide interesting insights. The four greedy algorithms show
promising results in terms of relative error. For each, the mean relative error is
around 10 percent, the upper quartile falls around 25 percent, and values are rarely
seen above 30 percent. As reference, a Random Sequence algorithm was also de-
veloped which simply makes a random decision which node to take next. For this
algorithm, the mean relative error was around 40 percent, with the lower quartile
at around 25 percent, and upper quartile at around 50 percent.
From the results, two algorithms are clearly superior. First, the Directed Search
algorithm should be chosen if the optimal solution is desired and computational
resources are sufficient. If a greedy approach is desired, then the Dynamic Benefit
Ratio algorithm provides a low relative error at a low performance cost.
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8 Related Work

The problem of adequately configuring a co-simulation is not new. We can clas-
sify the approaches according to when and which information is used to configure
the co-simulation: static and adaptive.
An adaptive configuration approach monitors the co-simulation results and ad-
justs the co-simulation algorithm parameters accordingly. A static configuration
approach sets the parameters without running the co-simulation. An overview of
the adaptive configuration approaches is given in [18].
In the static configuration category, the following works have the same goal as
our work. Rather than starting from a co-simulation scenario, the works in [5,
21, 27] use a system architecture model to generate a co-simulation scenario and
a master algorithm that is consistent with that architecture. The work in [5] uses
the input/output feed-through and the kind of model underlying the co-simulation
unit (e.g., ODE, DAE, . . . ) to correctly configure the input approximations used.
The authors in [27] go even further and use the eCl@ass classification system to
automatically link the units.
We complement these works by showing other examples of information that are
useful to configure the co-simulation, and generating multiple master algorithms,
instead of a single one. This is due to the fact that there might not be enough
information available to fully specify a single master algorithm.
In the domain of scheduling co-simulations,the authors of [11] provide a se-
quence calculation concept, which is analogous to our trigger sequence. Their
work defines an optimization problem minimizing the communication delays
between the co-simulation units in the sequence, while taking into account in-
put/output dependencies. The optimization algorithm provides an almost optimal
solution over a co-simulation scenario with 14 units. Our work instead focuses
on the issue of breaking algebraic loops in the co-simulation scenario, and deter-
mining optimal and heuristic algorithms for scheduling.
The current work is based off of the approach by Holzinger and Benedikt [19]
which examines the Travelling Salesman Problem (TSP) approach to schedul-
ing co-simulations with algebraic loops. We extend that work by presenting fur-
ther discussion about approaches to the scheduling problem, including a counter-
example for the TSP approach. The current work also provides optimal and heuristic-
based algorithms with a lower performance cost than the brute-force algorithm
found in [19].

9 Conclusion

Configuration of co-simulation scenarios can be complicated due to its black-
box nature, required knowledge of numerical techniques, and lack of a reference
solution. In this paper, we have summarized our HintCO technique for (semi-) au-
tomatically configuring co-simulations based on user intuitions about the system,
as expressed through hints.
This work has also presented our advancements in understanding the schedul-
ing problem for co-simulations with algebraic loops. The formalization of the
problem suggests that the problem is in or around NP-complexity and that it will
be difficult or impossible to arrive at a polynomial-time algorithm. Second, we
have determined that typical graph-based algorithms to visit all nodes such as the
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Travelling Salesman Problem and Minimum Spanning Trees do not sufficiently
deal with the issue that node ordering changes the cost function during visitation.
As a concrete contribution, we have determined that a directed search (presented
in Section 5.4) can find an optimal solution, given enough time. We have also
presented heuristic algorithms to solve this problem along with results which in-
dicate their performance and a measure of optimality.
This work is being integrated as scheduling improvements in our HintCO tool [13].
In particular, hints can now be added to co-simulation scenario connections to
indicate their weight in a scenario graph. If an algebraic loop is detected in a sce-
nario then HintCO performs the directed search for the optimal trigger sequence,
then transforms it back to a dependency graph to be executed. This search and
transformation is performed ‘behind-the-scenes’, so that the user is shielded from
the complexity of co-simulation scheduling.

9.1 Future Work

One important direction for our future work is to determine whether there is an
algorithm which is less computationally expensive than the directed search ap-
proach (Section 5.4) but which still guarantees optimality. We suspect that the
co-simulation scheduling problem to be in the NP class, but a proof is required.
As well, we are investigating integrating additional hints into HintCO to support
other scheduling problems. For example, co-simulation can be performed over
a network as in [22], where co-simulation units are distributed geographically
or within a network. One problem which arises could be the partitioning of co-
simulation units to each network node, depending on their dependence on other
nodes. This problem has been considered in a slightly different context in [20].
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