
Machine Learning-based Fault Injection for
Hazard Analysis and Risk Assessment?

Bentley James Oakes[0000−0001−7558−1434], Mehrdad
Moradi??[0000−0001−8748−069X], Simon Van Mierlo[0000−0002−4043−6883], Hans

Vangheluwe[0000−0003−2079−6643], and Joachim Denil[0000−0002−4926−6737]

University of Antwerp and Flanders Make vzw, Belgium
{bentley.oakes, mehrdad.moradi, simon.vanmierlo, hans.vangheluwe,

joachim.denil}@uantwerpen.be

Abstract. Current automotive standards such as ISO 26262 require
Hazard Analysis and Risk Assessment (HARA) on possible hazards and
consequences of safety-critical components. This work attempts to ease
this labour-intensive process by using machine learning-based fault injec-
tion to discover representative hazardous situations. Using a Simulation-
Aided Hazard Analysis and Risk Assessment (SAHARA) methodology,
a visualisation and suggested hazard classification is then presented for
the safety engineer. We demonstrate this SAHARA methodology using
machine learning-based fault injection on a safety-critical use case of an
adaptive cruise control system, to show that our approach can discover,
visualise, and classify hazardous situations in a (semi-)automated man-
ner in around twenty minutes.

Keywords: Hazard Analysis · Risk Assessment · Verification · Fault
injection · Reinforcement Learning · Signal Temporal Logic.

1 Introduction

Automotive systems are complex cyber-physical systems with ever-tightening
safety and production efficiency requirements. These qualities must be ensured
even as automotive software contains lines of code numbering in the tens of
millions [6] to support many modern features, including autonomous operation.

The well-known ISO 26262 standard mandates manufacturers to perform
safety and hazard analysis of their vehicles [11]. In particular, hazards and faults
must be shown to be adequately considered and handled by the manufacturer
in the form of supporting evidence cases. ISO 26262 defines one outcome of
this analysis as the Automotive Safety Integrity Level (ASIL), which denotes
the risk of a hazard and, therefore, the level of risk reduction required to be
? This work was partly funded by Flanders Make vzw, the strategic research cen-

tre for the Flemish manufacturing industry; and by the aSET project (grant no.
HBC.2017.0389) of the Flanders Innovation and Entrepreneurship agency (VLAIO).

?? Corresponding author. Tel: +32 487 850 695.



2 B. Oakes et al.

implemented by automotive components. Performing this Hazard Analysis and
Risk Assessment (HARA) is manual work that requires hours of discussions
between safety engineers [16]. Automating aspects of this analysis, therefore,
greatly reduces the time taken to understand hazardous situations.

A Simulation-Aided Hazard Analysis and Risk Assessment (SAHARA) ap-
proach can utilise intelligent Fault Injection (FI) on vehicle components, which
are then simulated for the visualisation and classification of hazardous situa-
tions [21]. Further described in Section 3, this SAHARA methodology1 involves
models of the components under study, information on how to inject faults, the
safety-critical scenarios of interest, and a process to suggest a hazard classifi-
cation for the simulation result. This (semi-) automated methodology provides
safety engineers with representative visualisations and safety classifications of a
system’s faulty behaviour in various hazardous situations.

However, the SAHARA methodology defined in [21] presents few details on
the FI procedure and implementation. For example, selecting the injection site
and optimising the fault parameters is not discussed, and no indication of the
performance of the FI procedure is given.

Our research focuses on intelligent FI, which employs a Reinforcement Learn-
ing (RL) algorithm to discover fault parameters [18]. RL is a large category of
Machine Learning (ML) algorithms learning from the environment by interacting
dynamically with it [20]. RL is used to automatically identify the parameters for
critical faults that should be injected into the component under test to provoke
increasingly more hazardous behaviour. In this work, we place our FI approach
within the SAHARA methodology and inject hazardous faults. The CARLA
open-source simulator for automotive research [8] then produces a visualisation
of the resulting system behaviour, and an ASIL is suggested using temporal logic
on the simulation traces.

This paper’s contributions are therefore: (i) detailing how the ML-based FI
process uses the available data within the SAHARA methodology to automat-
ically produce hazardous situations, (ii) providing an example of the FI and
SAHARA processes on a use case, including an indication of the approach perfor-
mance, and (iii) a discussion of the benefits and drawbacks of placing ML-based
FI within the SAHARA process.

Section 2 introduces the adaptive cruise control example. Section 3 describes
FI within the SAHARA methodology, while Section 4 an indication of perfor-
mance. Section 5 discusses the approach, while related literature is presented in
Section 6 and Section 7 concludes the paper and describes future work.

2 Adaptive Cruise Control

This section introduces the Adaptive Cruise Control (ACC) system under study
and the potential hazards that may arise from faults in the component.
1 Other approaches such as [13, 14] refer to a SAHARA approach. This paper uses

SAHARA solely to refer to the methodology of [21].



ML-based Fault Injection for HARA 3

Fig. 1: ACC speed and spacing modes. Fig. 2: ACC model in Simulink®.

The purpose of the ACC is to regulate the speed of the ego vehicle (the vehicle
of concern) to ensure that it does not approach the rear of any lead vehicles too
closely. The user of the ACC defines a preferred speed and safe distance, which
is compared to the relative distance between the ego and lead vehicles. Figure 1
presents the two modes of the ACC. The first mode of the ACC is the speed
control mode; the ACC directs the ego vehicle to increase the vehicle’s speed
to the preferred speed, potentially decreasing the relative distance. The second
spacing control mode occurs when the ego vehicle is within safe distance to the
lead vehicle. Here, the ACC directs the ego vehicle to reduce its speed such that
the safe distance is maintained.

The Simulink® model used for this work is shown in Fig. 2, where the ACC
is modelled in the left-hand block and the ego vehicle dynamics and environment
are modelled in the right-hand block2. In this work, the automotive simulator
CARLA [8] will replace the vehicle dynamics and environment block.

As the ACC component can control the vehicle’s acceleration and the result-
ing distance from other vehicles, the ACC is a safety-critical component. Even a
minor fault could violate the safety requirement that the relative distances be-
tween vehicles is greater than a set safe distance. In a more hazardous situation,
a major fault in the ACC could lead to an unintended acceleration into the rear
of the lead vehicle, potentially resulting in severe injuries or death. Therefore,
this ACC component must be intensively examined in a structured manner to
determine possible hazards and their consequences.

In Section 3.3, we inject a fault in the longitudinal velocity of the ego vehicle,
which is transferred to the ACC such that the ACC does not accurately know
the vehicle’s speed. This hazardous situation can lead to unintended acceleration
as visualised and classified with the SAHARA methodology.

3 ML-based FI within the SAHARA Methodology

The Simulation-Aided Hazard Analysis and Risk Assessment (SAHARA) method-
ology focuses on assisting with (semi-) automated reasoning about the hazards
2 The model is an adapted version of https://www.mathworks.com/help/mpc/ug/

adaptive-cruise-control-using-model-predictive-controller.html.



4 B. Oakes et al.

Fig. 3: The overall SAHARA architecture and workflow (adapted from [21]).
Yellow blocks are automatic actions, and gray blocks are manual actions.

and risks present in a safety-critical system [21]. In summary, this methodol-
ogy utilises specifications of scenarios, faults, and vehicle dynamics, which are
combined and fed as input into simulations, which in turn provide data for vi-
sualisations and classification of the (potentially) hazardous situation.

The following sections will address applying the five prominent components of
the approach as indicated in Fig. 3: required information, scenario selection, fault
injection and reinforcement learning algorithm, simulation and visualisation, and
classification of hazard level.

3.1 Required Information

Scenario Database. This scenario information combines the map and path in-
formation for vehicles, along with different influence factors, such as relevant
characteristics of the vehicle, road conditions, and vehicle/pedestrian interac-
tions [21, 13].

Vehicle and Item Models. The SAHARA methodology requires detailed vehicle
models, including the dynamics and the component(s) under study. Faults are
injected into these component models, and the dynamics models are then used
to simulate a scenario and assess the safety of the faulty component. In this
work, we utilise the simple vehicle dynamics model built into CARLA, and the
ACC model available within the Simulink documentation (see Section 2).

Functionality and Fault Database. Information on which component is under
study and how it may fail is also necessary for utilising the SAHARA methodol-
ogy, such that faults can be appropriately applied to the item models as discussed
in Section 3.3. The functionality under study in this work is the reporting of the
ego vehicle’s longitudinal velocity to the ACC (see Section 2), with sensor noise
and stuck-to faults available ([21]).

Severity and Controllability Contracts. The SAHARA methodology requires
contracts to suggest levels of severity and controllability as defined by the ISO
26262 standard. These contracts are discussed in detail in Section 3.5.



ML-based Fault Injection for HARA 5

Fig. 4: Base scenario, and visualized as DryRoad, RainyRoad, and NightRoad.

3.2 Scenario Selection

An analysis of automotive hazards involves reasoning about the safety of a com-
ponent in various scenarios. These scenarios involve the layout of the roads, the
road surface, as well as effects like the weather. These factors may all impact
the dynamics or controllability of the vehicle and thus must be considered in a
safety assessment process.

As envisaged in the SAHARA methodology [21], the safety engineer would
select representative scenarios of interest through a tabular scenario description
file. This work selects three scenarios: a straight road in clear weather, rainy
weather, and night-time rainy weather, as shown in Fig. 4. The rainy weather
affects both the visuals of the situation and the friction parameters of the road3.
The night-time scenario does not affect the vehicle dynamics, but would make
the situation more hazardous for a human driver.

Each scenario represents the same driving manoeuvre as shown on the left-
hand side of Fig. 4. The red vehicle at the bottom is the ego vehicle, which must
detect the blue middle vehicle moving into the left lane to overtake the furthest
green vehicle. As explained in Section 2, the ACC must function appropriately
on the ego vehicle to detect this movement into its lane, decrease the ego vehicle’s
speed if necessary, and avoid an accidental rear-end collision.

3.3 Fault Injection and Reinforcement Learning Algorithm

Fault injection (FI) is a well-known technique that exposes the system to a
fault to allow the test engineer to understand if the system can adequately
respond or whether further design changes are required. Our approach focuses
on the most common stuck-to-value fault type in the sensors (input values) of
components [25].

For example, a stuck-to-value fault may force a signal’s value to be intermit-
tently ‘stuck’ to a certain value at some simulation time, as modelled in Fig. 5.
The middle block is a ‘switch’ block, which changes the output from the regular
input I to the faulty value V at all timesteps after time T. However, this fault
must still be parameterised to answer a) where to inject this fault, b) when the
switch should occur, and c) what the faulty value should be [3].
3 Friction values sourced from Fig. 24 of Singh and Taheri [28].



6 B. Oakes et al.

Fig. 5: Stuck-to-value fault at time T . Fig. 6: Model transformation FI [19].

Fault Injection in the Adaptive Cruise Control. The ACC controls the ego vehi-
cle’s acceleration based on the information from incoming radar combined with
the ACC’s information on the longitudinal velocity of the ego vehicle (Section 2).
As in [18], this work studies the presence of a stuck-to-value fault in the ego lon-
gitudinal velocity sensor of the ACC as seen in the top-left of Fig. 2. That is the
sensor which reports the current velocity of the ego vehicle to the ACC. With
this fault, the ACC will have incorrect knowledge of the ego vehicle’s velocity,
potentially resulting in a hazardous situation or collision.

In the SAHARA methodology, the safety engineer would select the longitu-
dinal velocity signal as the fault location and the stuck-to-value fault from the
ACC functionality and fault database. This FI is then performed using a frame-
work to perform rule-based transformations on Simulink models [7, 19]. Patterns
utilising Simulink blocks can be matched in a model, and a rewrite pattern can
then add, remove, or modify blocks. In Fig. 6 the left-hand side of the rule is
the block pattern to match and the right-hand side is the replacement pattern.

Use of Machine Learning for Fault Injection. As a contribution to the SAHARA
methodology, this work integrates the machine learning-based FI approach from
previous work [18]. In this approach, a Reinforcement Learning (RL) framework
searches the parameter space of the injected faults (when and what value to
inject) over several simulations to force hazardous situations.

The framework utilises domain knowledge to set the boundaries and steer
the direction of the parameter search for the RL agent. For example, the reward
function in RL includes three parameters: the time of the simulation, the velocity
of the ego vehicle, and the relative distance of the ego and lead vehicles. This
reward function steers the search for fault values towards those that increase
the velocity while decreasing the time until the collision occurs and the relative
distance. This thus provokes as serious a crash as possible.

The FI framework runs multiple iterations of simulations with the fault pa-
rameters tuned each time to reach increasing reward function values correspond-
ing to more hazardous situations. This results in a set of fault parameters to in-
ject into the scenario to provoke the most hazardous behaviour found (as defined
by reward value), and explore the most relevant safety consequences of faults.

Note that the RL framework must simulate the vehicle’s behaviour in the sce-
nario to determine the outcome. Currently, this simulation is performed ‘head-
less’ (without visualisation) within Simulink to avoid any overhead. These opti-
misation simulations are separate from the simulation required for visualisation
as discussed in the next section.



ML-based Fault Injection for HARA 7

3.4 Simulation and Visualisation

At this step in the SAHARA methodology, the appropriate scenario and fault
(parameterised using RL) have been selected, and the fault has been injected
into the component model. The next stage is the simulation of the scenario to
produce a) a visualisation for use by experts in a safety assessment process, and
b) traces for a preliminary safety classification.

As in [30], we select the open source CARLA simulator [8] for its high-quality
visualisations, easy integration with other tools such as Simulink and Python,
and default vehicle dynamics model. The scenarios are loaded into CARLA by
modifying the weather and time of day on a built-in map.

The scenario is a co-simulation between CARLA and Simulink using a Python
bridge to synchronise each time step. This simulation runs for a predetermined
time as set in the scenario parameters. Simulink simulates the ACC, while
CARLA simulates the vehicle dynamics and environment. Simulation traces are
also produced for the assessment of hazardous situation. These signals include
the acceleration, velocity, and a measure of the collision impulse of the ego ve-
hicle (with any kind of object), the relative velocity and distance to the lead
vehicle, and a measure of the time gap before a collision would occur ([26]).

From the simulation, CARLA also produces a visualisation for the safety
engineer to utilise to reason about the consequences of the studied fault. These
visualisations thus show to the safety engineer a sense of the driver’s experience
as well as possible outcomes of the failure of the component. This provides insight
into how faulty behaviour could be hazardous.

3.5 Hazard Classification

The last step of the SAHARA methodology is to examine the resulting simulation
traces to suggest a preliminary classification of the scenario hazard level.

The ISO 26262 standard specifies that an Automotive Safety Integrity Level
(ASIL) be produced for a particular scenario by classifying the exposure (E),
severity (S), and controllability (C) level of the hazardous scenario [11]. The
ASIL is then provided by lookup in a table taking the E, C, and S into account
to give ASIL QM (lowest) or A to D (highest). The ASIL, therefore, provides a
guide to the safety-critical nature of a component’s faults.

Exposure - The exposure (E) level of the scenario estimates the likelihood
of the scenario from a scale from E1 (low exposure) to E4 (high exposure).
The literature presents an automated approach to this calculation based on the
probability of each influence factor in the scenario [13].

Severity - The severity (S) level concerns the potential injuries or death
caused in the scenario, ranging from S1 (no injuries) to S4 (multiple severe
injuries or deaths).

Controllability - The controllability (C) level of a situation also ranges from
C1 to C4. This level represents the difficulty in controlling or avoiding the situ-
ation. This includes the driver of the vehicle as well as other participants in the
scenario, such as pedestrians.



8 B. Oakes et al.

Fig. 7: S2 Severity contract. Fig. 8: C2 Controllability contract.

Table 1: Severity and Controllability contracts for hazard classification.
S. Level Conditions C. Level Conditions

S0 collImpulse = 0 G C0 accel in ±1.47m/s2

S1 collImpulse >= 0.01 G timeGap > 2.6 s
S2 collImpulse >= 40 G for 0.1 s C1 accel in ±3.07m/s2

collImpulse >= 25 G for 0.2 s timeGap in 1.3 to 2.6 s
collImpulse >= 15 G for 0.6 s C2 accel > ±3.07m/s2

S3 collImpulse >= 100 G for 0.01 s timeGap in 0.5 to 1.3 s
collImpulse >= 50 G for 0.04 s C3 timeGap < 0.5 s
collImpulse >= 45 G for 0.1 s
collImpulse >= 30 G for 0.3 s
collImpulse >= 25 G for 0.8 s

Controllability and Severity Contracts. The SAHARA methodology proposes
assigning severity and controllability levels by developing temporal logic con-
tracts that operate over the traces output from a simulation [21]. In this work,
we further develop the provided contracts in Signal Temporal Logic (STL) [15]
and apply them to the simulation traces produced by CARLA. Temporal logic
is utilised due to the requirement to reason about both the value of signals as
well as the temporal duration of conditions, such as ‘at least 0.4 seconds’.

Severity Contracts - The ego vehicle collision impulse experienced in a col-
lision can be used as a proxy for the severity level experienced [21]. Table 1
includes the assignment of collision impulse ranges to severity levels specified
by [21] utilising data from [27]. For example, if the collision impulse is expe-
rienced at over 40 Gs of force for at least 0.1 seconds, then S2 is assigned by
Fig. 7.

Controllability Contracts - Two factors are included as proxies for control-
lability in Table 1: a) the longitudinal acceleration of the ego vehicle, where
extreme values indicate a more aggressive driver [2], and b) a measure of reac-
tion time for a driver in case of a lead vehicle emergency brake. That is, how
many seconds the driver has to respond before a collision [26]. For example, Fig. 8
assigns C2 (moderately uncontrollable) if the time gap between the vehicles is
less than a standard reaction time of 1.3 seconds [5].



ML-based Fault Injection for HARA 9

Contract Evaluation. For verification, each contract in Table 1 is mapped to an
equivalent STL representation [4]. This mapping process increases the usability
of the contract verification approach, as STL can be difficult to reason about
and write by hand. Instead, this domain-specific contract language allows for
the specification of contracts using familiar operators and units.

For example, Eq. (1) shows the STL generated for the Severity contract seen
in Fig. 7. This STL converts the collision impulse into the correct unit and
implements the Existence pattern with duration present in Fig. 7. The resulting
STL is then verified against the vehicle dynamics traces produced by CARLA.

eventually(always[0 : 0.1]((collImpulse/14.0) >= 392.0)) (1)

These traces and the contract STL are fed as input into the Python-based
RTAMT verification library4. Each contract’s STL is checked in turn in an offline
manner on the simulation traces. If the specification succeeds, then the trace (and
therefore the situation) is assigned at least that severity or controllability level.

Outcome. As discussed in the SAHARA methodology and Section 3.2, the ex-
posure (E) level can be determined by examining the influence factors of the
scenario. The severity (S) and controllability (C) levels are then calculated by
verifying temporal logic contracts on the resulting simulation trace. The resulting
ASIL is then determined through a lookup table of the E, S, and C levels.

This ASIL suggestion is presented to the safety engineer along with a vi-
sualisation of the fault scenario to assist in assessing the hazardous situation.
Even though these artifacts are only a suggestion of possible outcomes, they may
provide insight into the hazardous nature of the situation.

4 Results

Table 2 displays the results of our application of the SAHARA methodology with
ML-based FI to the ACC use case. For each scenario, the calculated Severity and
Controllability levels and a suggested ASIL are presented. As each of these sce-
narios is quite likely, an exposure level of E4 is statically assigned. Visualisations
are also available online for all regular and faulty scenarios5.

For the non-faulty scenarios, the simulation traces indicate that no collision
occurred. Therefore the severity level is the lowest, and the ASIL remains as
Quality Management (QM). In the RainyRoad scenario, the stopping distance
and the timeGap between the vehicles are modified due to the lowered road
friction. The contracts from Table 1 thus assign a higher Controllability level
(less controlled).

For the scenarios with faults, a collision is provoked by the machine learning
approach in Section 3.3. There is a significant collision impulse as the velocity
4 https://github.com/nickovic/rtamt
5 https://www.youtube.com/playlist?list=PLNyNvnuIvPKvsmUT1I-

hwEYDMyZ7YGZkA



10 B. Oakes et al.

Table 2: Suggested hazard classifications and visualisations for all scenarios.
Scenario Without Fault With Fault

DryRoad RainyRoad NightRoad DryRoad RainyRoad NightRoad
S Level 0 0 0 3 3 3
C Level 1 2 2 3 3 3
ASIL QM QM QM D D D

sensor of the ego vehicle becomes faulty as the lead vehicle is overtaking. The
rapid acceleration then causes an impact between the vehicles that could cause
grave injury. Thus, a severity level of S3 is assigned, leading to a suggested
hazard classification of ASIL D (the highest level).

The simulation time in our approach is divided into three parts: a) inject-
ing faults into the ACC Simulink model takes around 2.7 minutes, b) The RL
process then operates on this faulty model and finds multiple parameter sets
(fault amplitude and injection time) causing hazardous situations in about 13.5
minutes, and c) For each one of these critical parameter sets found, simulation
and visualisation takes around 2.5 minutes with three seconds for assigning an
ASIL. Therefore, an end-to-end run of this methodology takes about 20 minutes.

The FI process and the CARLA simulation took place on a 32-core processor
running at 2.99 GHz with 24 GB of memory and a graphics card with 11 GB of
memory. Only the RL part is multi-threaded. The contract verification process
took place on a 12-core Intel i7-8850H CPU at 4.3 GHz with 16 GB of memory.

5 Discussion

Approach Benefits. The approach of the SAHARA methodology (Section 3) is to
ease the effort required by the safety engineer in performing a safety assessment
of the component. This process can (semi-)automatically produce simulations
and visualisations of component faults.

Thus our addition of ML-based FI is a natural step, as it attempts to op-
timise the parameters of injected faults such that a more hazardous situation
develops (Section 3.3). As in previous work [17], this approach is superior to
random-based FI in exploring the fault space in terms of fault coverage and num-
ber of simulation to find the first critical fault. The addition of this step may
thus allow the safety engineer to discover previously unknown situations where
unsafe behaviour occurs and increase fault coverage. Therefore, the simulations
and visualisations increase the safety engineer’s comprehension of the possible
component faults and offer concrete discussion points and insights.

A substantial value of this automatic SAHARA methodology with ML-based
FI is the (semi-)automation, leading to new visualisations and classification re-
sults produced in a matter of minutes (Section 4), although a computationally
powerful machine is required. We envision an assessment workflow where visu-
alisations could be interactively produced during a safety assessment discussion
about various scenarios or faults.



ML-based Fault Injection for HARA 11

Human-in-the-Loop Necessary. At first glance, not having a fully automated
framework and keeping a human-in-the-loop is a limitation for SAHARA. How-
ever, this is not possible in safety assessment, requiring a tremendous amount
of experience and in-depth domain knowledge that is unlikely to be adequately
captured by an automaton. The safety engineer’s role cannot be replaced en-
tirely, despite the cost of safety assessment discussions. This is due to barriers,
including legal responsibilities or insufficient simulation fidelity.

Approach Limitations. Our approach inherits the weakness of ML. For example,
the time taken to search for a hazardous situation depends on the proper mod-
elling of the vehicle, environment, and the reward function to steer the search [10,
18]. If the representation of the problem or the reward function is insufficient,
then a hazardous situation may not be found. The probabilistic nature of ML
also means that it cannot be predicted at what time a hazardous situation will be
found. Another issue is that this searching process is computationally expensive
and can take a significant amount even on a powerful computer. As the vehicle
and component models become more realistic and even more complex, this could
limit the applicability of this technique.

Here we suggest two challenges not addressed in this work:
a) For any particular scenario, the situation found by the SAHARA method-

ology may not be the absolute worst-case due to the infinite and granular space
of situations possible. For example, a steering fault may or not cause a head-on
crash based on a margin of centimetres or less. Instead, this SAHARA method-
ology aims to present a representative simulation, such that a safety engineer
can recognise the inherent danger in this situation.

b) An extended assessment of controllability and severity levels involves more
than just vehicle dynamics models [13, 21]. For example, controllability relies
on the driver’s reaction (and others), which requires modelling of driver’s be-
haviour [23]. Likewise, severity depends on the dynamics of the driver inside the
vehicle, such as possible whiplash injuries or interactions with airbags.

Due to these challenges, we restrict our application of the SAHARA method-
ology to only providing representative hazardous scenario visualisations and haz-
ard classification suggestions to assist safety assessments for a safety engineer.

6 Related Work

Assessing safety in the automotive domain is an active field of research, especially
in assessing autonomous vehicles [22]. For example, the open-source MOBATSim
framework combines a sub-microscopic vehicle simulator with reasoning about
faults [24]. Faults are injected into the front distance sensor for vehicles in a
platooning scenario, with a Monte Carlo approach to find more hazardous situa-
tions. Results are presented by the framework to relate the fault parameters with
an indication of safety specifications violations. This approach also addressed the
design of safety-critical systems, where faults and scenarios are evaluated for two
design variants to choose the safer design [26].



12 B. Oakes et al.

Juez et al. examine the role of FI in the context of the ISO 26262 standard and
its safety assessment process [12]. The SABOTAGE framework is defined, which
performs FI on a lateral control vehicle component, simulates the faulty scenario
versus a non-faulty (golden) scenario, and then determines the maximum time
that a fault can be present in the system.

In this work, we utilise RL to adjust the fault parameters to provoke a more
serious situation [18]. Alternatively, the work of Althoff and Lutz [1] adjusts the
scenario parameters themselves, such as doubling the initial speed of the ego
vehicle in a scenario or arranging the movement of vehicles to block off lanes or
increase the danger of overtaking.

Duracz et al. explore the use of rigorous simulations to assign severity levels
in an ISO 26262 safety assessment context [9]. Rigorous simulations operate on
explicit dynamics models and produce provably correct bounds for the behaviour.
As in our work, Duracz et al. base the severity level on the change in the velocity
signal upon collision.

Tuncali et al. define STL specifications for both system- and component-
level to be proved on a simulation [29]. An example is that when an object is
visible to sensors, the object must be detected by the sensors within a specific
time frame. An optimisation framework is then employed to find scenarios that
falsify the specifications. In contrast, our work performs the optimisation on the
FI to search towards the most hazardous situation, and the specifications are
only for hazard classification.

Zapridou et al. mirror our work by presenting STL verification of properties
on an ACC use case using the CARLA simulator [30]. However, our work focuses
on the FI portion of determining safety, and also places the intelligent FI within
the SAHARA safety assessment process.

7 Conclusion and Future Work

This work has presented the addition of machine learning-based Fault Injection
(FI) to the Simulation-Aided Hazard Analysis and Risk Assessment (SAHARA)
methodology, as demonstrated on a safety-critical use case of an Adaptive Cruise
Control (ACC). Specifically, Reinforcement Learning (RL) explores the param-
eters of faults injected into the ACC such that a hazardous situation is pro-
voked. This situation is then simulated in the open-source automotive simulator
CARLA [8] to produce a visualisation as well as simulation traces for use in
indicating the hazard classification level of the situation. Example situations are
shown to demonstrate the applicability of our approach, and timing results in-
dicate that this approach is relatively interactive as it takes only around twenty
minutes to complete end-to-end, and less than three minutes to produce a new
visualisation.

The natural extension of this work is to validate it within an industrial safety
assessment process. In particular, performing a study following the safety engi-
neers as they perform the standard hazard analysis and risk assessment proce-
dure, and then comparing this with our proposed SAHARA with RL-based FI.



ML-based Fault Injection for HARA 13

Metrics and user surveys would then indicate the time saved and satisfaction
with the (semi-)automated approach.

References

1. Althoff, M., Lutz, S.: Automatic generation of safety-critical test scenarios for
collision avoidance of road vehicles. In: 2018 IEEE Intelligent Vehicles Symposium
(IV). pp. 1326–1333. IEEE (2018)

2. Bae, I., Moon, J., Seo, J.: Toward a comfortable driving experience for a self-driving
shuttle bus. Electronics 8(9), 943 (2019)

3. Benso, A., Prinetto, P.: Fault injection techniques and tools for embedded systems
reliability evaluation, vol. 23. Springer Science & Business Media (2003)

4. Bernaerts, M., Oakes, B., Vanherpen, K., Aelvoet, B., Vangheluwe, H., Denil,
J.: Validating industrial requirements with a contract-based approach. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C). pp. 18–27. IEEE (2019)

5. Coley, G., Wesley, A., Reed, N., Parry, I.: Driver reaction times to familiar, but
unexpected events. TRL Published Project Report (2009)

6. Coppola, R., Morisio, M.: Connected car: Technologies, issues, future trends. ACM
Comput. Surv. 49(3) (Oct 2016)

7. Denil, J., Mosterman, P.J., Vangheluwe, H.: Rule-based model transformation for,
and in Simulink. In: Proceedings of the Symposium on Theory of Modeling &
Simulation-DEVS Integrative. pp. 1–8 (2014)

8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. pp. 1–16 (2017)

9. Duracz, A., Aljarbouh, A., Bartha, F.A., Masood, J., Philippsen, R., Eriksson,
H., Duracz, J., Xu, F., Zeng, Y., Grante, C.: Advanced hazard analysis and risk
assessment in the iso 26262 functional safety standard using rigorous simulation.
In: Cyber Physical Systems. Model-Based Design, pp. 108–126. Springer (2019)

10. Hauer, F., Pretschner, A., Holzmüller, B.: Fitness functions for testing automated
and autonomous driving systems. In: International Conference on Computer Safety,
Reliability, and Security. pp. 69–84. Springer (2019)

11. International Organization for Standardization: ISO 26262: Road vehicles-
functional safety (2011)

12. Juez, G., Amparan, E., Lattarulo, R., Rastelli, J.P., Ruiz, A., Espinoza, H.: Safety
assessment of automated vehicle functions by simulation-based fault injection. In:
2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES).
pp. 214–219. IEEE (2017)

13. Kemmann, S.: SAHARA-A Structured Approach for Hazard Analysis and Risk
Assessments. Ph.D. thesis, Fraunhofer-Institut für Experimentelles Software Engi-
neering (2015)

14. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: SAHARA: a
security-aware hazard and risk analysis method. In: 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 621–624. IEEE (2015)

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)



14 B. Oakes et al.

16. Meyers, B., Gadeyne, K., Oakes, B.J., Bernaerts, M., Vangheluwe, H., Denil, J.:
A model-driven engineering framework to support the functional safety process.
In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). pp. 619–623 (Sep 2019)

17. Moradi, M., Oakes, B., Denil, J.: Machine learning-assisted fault injection. In:
39th International Conference on Computer Safety, reliability and Security (SAFE-
COMP), Position Paper, Lisbon, Portugal (2020)

18. Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K., Denil, J.: Ex-
ploring fault parameter space using reinforcement learning-based fault injection.
In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W). pp. 102–109. IEEE (2020)

19. Moradi, M., Van Acker, B., Vanherpen, K., Denil, J.: Model-implemented hybrid
fault injection for Simulink (tool demonstrations). In: Chamberlain, R., Taha, W.,
Törngren, M. (eds.) Cyber Physical Systems. Model-Based Design. pp. 71–90.
Springer International Publishing, Cham (2019)

20. Polydoros, A.S., Nalpantidis, L.: Survey of model-based reinforcement learning:
Applications on robotics. Journal of Intelligent & Robotic Systems 86(2), 153–173
(2017)

21. Rafael, A.B.J., Bachir, Z.: Sahara: Simulation aided hazard analysis and risk as-
sessment methodology. Risk Analysis XII 129, 41 (2020)

22. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

23. Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Human factors
48(2), 362–380 (2006)

24. Saraoglu, M., Morozov, A., Janschek, K.: Mobatsim: Model-based autonomous
traffic simulation framework for fault-error-failure chain analysis. IFAC-
PapersOnLine 52(8), 239–244 (2019)

25. Saraoğlu, M., Morozov, A., Söylemez, M.T., Janschek, K.: ErrorSim: A tool for er-
ror propagation analysis of Simulink models. In: Tonetta, S., Schoitsch, E., Bitsch,
F. (eds.) Computer Safety, Reliability, and Security. pp. 245–254. Springer Inter-
national Publishing, Cham (2017)

26. Saraoğlu, M., Shi, Q., Morozov, A., Janschek, K.: Virtual validation of au-
tonomous vehicle safety through simulation-based testing. In: Bargende, M., Reuss,
H.C., Wagner, A. (eds.) 20. Internationales Stuttgarter Symposium. pp. 419–434.
Springer Fachmedien Wiesbaden, Wiesbaden (2020)

27. Shanahan, D.F.: Human tolerance and crash survivability. Pathological aspects
and associate biodynamics in aircraft accident investigation (2004)

28. Singh, K.B., Taheri, S.: Estimation of tire–road friction coefficient and its applica-
tion in chassis control systems. Systems Science & Control Engineering 3(1), 39–61
(2015)

29. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-
driven test generation for autonomous vehicles with machine learning components.
IEEE Transactions on Intelligent Vehicles 5(2), 265–280 (2019)

30. Zapridou, E., Bartocci, E., Katsaros, P.: Runtime verification of autonomous driv-
ing systems in carla. In: International Conference on Runtime Verification. pp.
172–183. Springer (2020)


