Structuring and Accessing Knowledge for
Historical and Streaming Digital Twins

1,2[0000—0001—7558—1434]) Bart MeyersQ [0000—0001—9566—8297] ,
2,3[0000—0003—0549—3775)

Bentley James Oakes
Dennis Janssens
Vangheluwe

, and Hans
1,2[0000—0003—2079—6643]

1" AnSyMo Lab, University of Antwerp, Antwerp 2000, Belgium
{Bentley.0Oakes,Hans.Vangheluwe }Quantwerpen.be
2 Flanders Make vzw, Lommel 3920, Belgium Bart.Meyers@flandersmake.be
3 DMMS Lab, Katholieke Universiteit Leuven, Leuven 3001, Belgium
Dennis.Janssens@kuleuven.be

Abstract. Organisations are intensely developing Digital Twins (DTs)
to correctly and efficiently answer questions about the history and be-
haviour of physical systems. However, it is not clear how to construct
these DTs starting from the data, information, knowledge, and wisdom
available in the organisation. In this work, we present our approach to DT
construction which involves a layered knowledge graph (KG) architecture
communicating with the organisation’s data repositories. We explain the
components and timelines for using the KG to build both historical and
streaming DTs, and what kinds of questions can be answered for our
drivetrain use case.

Keywords: Digital Twins - Knowledge Graph - Knowledge Represen-
tation.

1 Introduction

The rise of the Internet of Things (IoT) and Industry 4.0 means that today’s
industries are faced with a deluge of data. Multitudes of data points (sales, sensor
values, maintenance records, ...) are generated each second and poured into
various data repositories, each with implicit connections and relations between
organisational resources (processes, machines, environmental conditions, etc.).
The lack of semantics and explicit relations can hinder actionable insights [2]
such that a data scientist investigating the data spends considerable time to
understand the context of the data before it can be used. This slows down the
process of discovering trends, influencing new designs, using modelling results,
and discovering past experiments and lessons learned.

For example, a simple query such as what experiment produced these results?
can often become an laborious endeavour to answer. As a first step, one must find

Copyright (©) 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 B. Oakes et al.

the data and then understand the format and units, which may involve countless
emails to find the one person in the organisation who understands the data. This
inefficient process can consume the time of multiple people on coordination,
which is further delayed if anyone involved has left the organisation.

Report Context This paper presents our current insights and vision developed
as part of a joint academic-industrial project led by Flanders Make, the strate-
gic research center for the Flemish manufacturing industry. The Framework for
Systematic Design of Digital Twins (DTDesign) project brings together three
universities and five industrial partners to focus on determining the most effec-
tive technologies and methods for how to build a Digital Twin (see Section 3)
from a representation of an organisation’s past and current data, information,
knowledge, and wisdom (DIKW) [15]. The insights presented in this report are
gained from our collaborations, discussions, and creation of initial prototypes.
Throughout the lifetime of the project, these results are and will be iteratively
applied and validated on the industrial use cases, beyond the academic drivetrain
use case presented in Section 3.2.

Approach In the DTDesign approach, the representation of an organisation’s
DIKW is stored as a knowledge graph (KG) which “acquires and integrates in-
formation into an ontology and applies a reasoner to derive new knowledge” [5].
It contains relevant DIKW which is consistent and provides value to the or-
ganisation through its connections, and has been successfully applied in many
domains [1,4]. The KG is built, maintained, and queried by the user (possibly
through applications). The results of these queries give insights into the system,
or are used to build applications or code to run on the machines. For example,
anomaly detection and optimisation algorithms are trained and executed using
the input conditions of particular procedures [11].

While KGs and DTs are each relatively old concepts, only recently has there
been work on their interactions, such as [16]. This is due to the increasing im-
plementation of DTs within industry and academia, the rise of IoT gathering an
enormous amount of data, and the computing resources offered by cheap servers
locally or in the cloud. However, experience reports on the development of DT's
and connected systems can lack crucial information [13], especially on the DT
components and their developmental timelines. In this paper, we describe the
processes of building up such a KG, building DTs from that KG, and their re-
lationships to each other and the physical system under study. In particular, we
discuss how the combination of KGs with the collection of industrial data at
scale leads to effective DTs able to provide actionable answers to questions. An
example timeline is also presented to illustrate the steps for building DTs from
a KG.

Contributions and Structure This paper presents these specific contributions:

— Section 2: A high-level architecture relating a KG to DTs.
— Section 3: Definition of historical and streaming DTs, and a connection to
the answers they provide for an example drivetrain use case.

Structuring and Accessing Knowledge for Historical and Streaming DTs 3

— Section 4: A discussion of the structure and purpose of this KG including
how to access, update, and compartmentalise the data/information/knowl-
edge/wisdom within to serve large industrial organisations.

— Section 5: A presentation of an example timeline for creating DTs and their
relations from a KG.

2 Conceptual Architecture

This section provides a brief overview of our approach to using a knowledge
graph (KG) to assist with the construction of digital twins (DT's). As discussed
in Section 3, these DTs are a virtual representation of a physical system.
Figure 1 shows the conceptual architecture of our solution. Our approach
relates four main components: 1) the KG containing information, which rests on
the data repositories of the organisation and acts as a historical DT, 2) the users
and applications who access information from the KG and DT, 3) a physical
system under study or control, and 4) the (streaming) DT of that system.

Historical Digital Twin Query/Mod.

Data | Data | Knowledge Results Users/
Repos. [Layer| Graph [——=—"> Apps.

Info

Data@
Physical <@ Actions Streaming

System Data » Digital Twin

Ques. Answers

©

Data

Fig. 1: Conceptual architecture of our proposed approach.

Four relations are also specified: A) the relation between the physical system
and the DT, B) information added to or retrieved from the KG, C) the connection
between the KG, data repositories, and the digital twin, and D) the questions and
answers between the user and the DT. Of course, the users may also manipulate
the physical system, but we omit this interaction from our architecture.

The remaining sections of this paper describe these components and relations
in detail. Also note that Figure 1 does not represent the time dimension of the
creation of the historical and streaming DTs. This is discussed in Section 5.

3 Running Example: Digital Twin(s) for a Drivetrain

This section provides background on digital twins (DTs) and introduces our
notions of historical and streaming DTs. Our drivetrain use case is also briefly
presented through a discussion of how these DT's can provide actionable answers
about the drivetrain.

4 B. Oakes et al.

3.1 Digital Twin Background

As sensors and computing power become ever cheaper each year, it becomes
easier to combine real-time data with high-fidelity models to create a virtual
representation of a system to answer questions about that system. The umbrella
term digital twin captures this relationship between a physical system and its
digital counterpart [6], where “a DT is a virtual instance of a physical system
(twin) that is continually updated with the latter’s performance, maintenance,
and health status data throughout the physical system’s life-cycle” [12].
Kritzinger et al. classify the term digital twin into three categories depending
on the relation between the physical object and the digital object [10]. This
relation is labelled A in Figure 1. A digital model is where there is no automatic
transfer of data between the digital and physical objects. A digital shadow is
where data from the physical object is sent to the digital object automatically,
as in a tracking simulator. Finally, a digital twin has an automatic connection
both to and from the physical system. Further details about this separation and
its application to DT experience reports are found in our previous work [13].

3.2 Addressing Drivetrain Questions

One of the use cases within the DTDesign project (see Section 1) is to repre-
sent and answer questions about an generic drivetrain representing drive-load
interaction, which composes the components that deliver power from a motor
to the wheels. In our conceptual architecture, these questions are answered by
software/hardware components implementing a DT. Three question sets are pre-
sented here, as they showcase how the DT's built are at different scales and relate
to the other components in Figure 1 differently.

The first question set is, “what is the correlation between motor current and
the drivetrain torque, and which experiments have been conducted to investigate
this?”. The answer is therefore based on historical data, which implies that the
DT is of the history of the drivetrain. We therefore term this a historical digital
twin (Section 3.3).

The second question set is “What is the best sensor to add to my drivetrain to
measure torque? Should this be a virtual sensor, or one relying on a non-intrusive
sensor?”. This question also relies on historical data for sensor validation as well
as for physical modelling of the drivetrain components.

The third question set asks, “What is an algorithm to detect anomalies in
the torque of the drivetrain, such that a warning signal can be raised?” This
algorithm can be trained on historical data, but will be deployed into a streaming
digital twin (Section 3.4) which is directly connected to the physical system.

3.3 Historical Digital Twin

In the historical DT case, the objective is to utilise the past knowledge of an
organisation to determine which correlations are present in data, or to create
and optimise algorithms to deploy in a streaming DT.

Structuring and Accessing Knowledge for Historical and Streaming DTs 5

A traditional process may involve a data scientist mining experimental results
and databases to locate such correlations. This can be a labour-intensive process
if the information is not readily available, such as the data scientist having to
contact a database owner to understand the meaning of the stored data.

In our approach, the historical DT created is a combination of software and
hardware which is able to access the historical information available in the
knowledge graph, or up-to-date information from the physical drivetrain sys-
tem through the data lake. The data scientist can then ask relevant questions to
the DT to obtain the required information in a structured and effective manner.

The historical DT is also relevant for questions where the user wishes to model
and simulate the drivetrain itself in high-fidelity. As discussed in Section 3.2, a
relevant question is whether a sensor can be found that is not too physically
intrusive to be mounted on the drivetrain, or whether a virtual sensor must be
created through combination of readings from other sensors. This relies on an
accurate three-dimensional representation of the drivetrain geometry and of the
considered sensors, such that the models can be combined with expert knowledge
to understand if a particular sensor can be physically inserted into the drivetrain.

Note that in the historical DT case, the physical system does not need to be
directly connected to the DT. Instead, it is the historical data that is of interest
to the data scientist, and the DT represents the history of the physical system
or the product plus production instead of the current behaviour.

3.4 Streaming Digital Twin

In contrast, the second DT type created for the drivetrain use case is focused
on the actual “live” behaviour of the drivetrain itself. Data flows from the phys-
ical system to the streaming DT in near real-time. That is, the streaming DT
is running alongside the physical system. For example, the drivetrain question
about anomaly detection requires a constantly updated stream of data being fed
as input into a device running alongside the drivetrain. This anomaly detection
model must accurately represent the behaviour of the drivetrain such that all
relevant anomalies are detected with few false positives. A future enhancement
for this use case is also to directly control the motors on the drivetrain using the
streaming DT, such that anomalies are handled appropriately in real-time.
This type of DT focuses more on the relationship between the digital twin
and the physical system. Thus the streaming DT is closer to those DT envi-
sioned for optimisation and control of a system, where the DT has an automatic
connection to the physical system (see [10, 13]). Note that this implies more tech-
nical constraints, such as Internet of Things (IoT) issues (power consumption,
real-time constraints, local computing, etc.) and intrusivity of sensors.

3.5 Digital Twin Classifications

Note there may not be a hard division between historical and streaming for a
DT, as both relate to information about a physical system. However, we state
that in a historical DT, the “twinning” of the DT focuses on the past data

6 B. Oakes et al.

and organisation’s knowledge about a product or process. In other words, the
physical system being represented is the past history of the object in question, and
the organisation’s knowledge about it. In the drivetrain example, this historical
DT focuses on the correlation between the current provided to the motors and
the resulting drivetrain torque, offering answers to questions about properties,
correlations, and experiments. As such, more information from the KG may be
accessed or present within the historical DT. Indeed, a portion of the KG may be
deployed as the historical DT itself. In contrast, a streaming DT is more focused
on the “live” information from the physical system itself in (semi-) real-time.

Section 5 also discusses how a DT may change classification between histori-
cal and streaming through its development, as the relevant questions change and
data from the physical system becomes accessible.

Finally, we wish to emphasise that this classification of historical and stream-
ing DTs is (mostly) orthogonal to the classification of Kritzinger et al. [10] of
digital model/shadow/twin. Recall that Kritzinger et al. makes a classification
on whether the connection between the physical and virtual systems are manual
or automatic. That is, whether the DT can automatically sense or actuate the
physical system. In contrast, our classification is based on whether a DT an-
swers questions based on data and information from the physical system’s past
(including development information), or on the physical system’s current state.

Therefore, it is possible to have any combination of historical/streaming and
digital model/shadow/twin, except for a streaming digital model.

That is, a DT could be created focusing on historical data which automat-
ically (or not) receives data and automatically (or not) controls the physical
system. For example, a historical DT may be constructed to periodically exam-
ine the experimental data collected and automatically perform new experiments
on the physical system to better understand the behaviour of the system.

As a streaming DT is concerned with the current behaviour of the system, it
must be able to automatically access the state of the physical system. Thus, a
streaming DT must be a digital shadow or digital twin as defined by Kritzinger
et al. [10], depending on whether there is the possibility to perform automatic
actions on the physical system.

4 Knowledge Graph

This section will discuss the knowledge graph in our approach. The concepts
of information hierarchy, heterogeneity, and compartmentalisation will be dis-
cussed. The relation between the user and the knowledge graph as displayed in
Figure 1 is also detailed.

4.1 Knowledge Graph Motivation

As mentioned in Section 1 there is a deluge of heterogeneous data present in
today’s large organisations. There has been significant work in the past on un-
derstanding data through the use of ontologies and semantic reasoning to provide

Structuring and Accessing Knowledge for Historical and Streaming DTs 7

context to this data [3]. This allows data to be augmented with and transformed
into information, knowledge, and wisdom (DIKW) [15], in a (semi-) automated
process [14]. This can be visualised as a pyramid, with a wide base of data,
then a layer of information, then knowledge, and a peak of wisdom. This rep-
resents how it becomes more difficult to extract meaning from the lower layers,
and how much more data there will be in an organisation as compared to the
forward-facing wisdom. As a rough mapping of this hierarchy to an industrial
context, data is kept in databases, information is the linking between elements
in a database, knowledge is the meta-data (data about data), and wisdom is any
planning which takes into account the other levels.

One approach to storing this DIKW is with a knowledge graph, which stores
this information as typed and attributed nodes with typed and attributed edges
between them. The regular structure is well-suited to query approaches, and a
great deal of flexibility is provided to the organisation to store DIKW their way.

In particular, the knowledge graph should conceptually support storage of all
relevant DIKW from the organisation, and the connections between. For exam-
ple, the knowledge graph may contain formalisation of the assets, experiments,
and conclusions performed by an organisation. This allows for its reuse in current
and future activities.

Once this knowledge graph is (partially) filled, then it can start to answer
meaningful questions about the people, processes, and things present in the
organisation. An connection to data lakes expands the DIKW and connections
available. New DIKW must also be added over time to support new uses, in an
incremental and consistent manner.

4.2 Heterogeneity

One challenge of combining a knowledge graph with industrial digital twins is
that the knowledge graph must handle DIKW which is highly heterogeneous.
For example, the Reference Architectural Model Industrie 4.0 (RAMI 4.0) [7]
contains six distinct layers: business, functional, information, communication,
integration, and asset. The knowledge graph could contain DIKW at all six of
these layers and allow for answering questions that span multiple layers.

The DIKW within or referred to by the knowledge graph is also highly het-
erogeneous. For example, there may be time series, relational information, graph-
based networks, images, documents, and any other information found in a large
organisation. Another industrially relevant division is whether a piece of DIKW
details the structure of an object, or instead details the behaviour of that ob-
ject. For example, an architectural decomposition of a drivetrain refers to the
mechanical components, while the behaviour is given through simulations or
experimental results.

4.3 Type Hierarchies

Conceptually, the knowledge graph contains all DIKW and connections in an
organisation. As this is not feasible, it must be possible for the knowledge graph

8 B. Oakes et al.

to be easily modified and evolved, and for connections between concepts to be
very flexible. As the knowledge graph grows in richness, the number of concepts
contained must also expand for flexibility and increased expressiveness.

In our knowledge graph approach, we offer the user a typing system that
defines attributes and relationships for concepts. This allows the user to spec-
ify their own types and instances, and to form typing relationships within the
knowledge graph. An example subset of a knowledge graph is pictured in Fig-
ure 2. The upper box of the figure shows the types, while the lower box displays
the instances. Note the vertical typing relations between these two boxes which
provide the typing information for the instances.

’ Knowledge Graph |

Types subTypeOf

Standardized Type Hierarchies / User-created Type Hierarchi€

. . Humidity
| StringType L\ | Phy5|caIVaIueType|
A \\ \

Instances \) \
Standardized Instances User-created Instances \
name measurement

Fig. 2: Example types, instances, and connections within a Knowledge Graph.

However, it is also important to ensure consistency within the knowledge
graph and to promote reusability and inter-operation with other sources of in-
formation. Therefore, the use of standardised concepts is suggested wherever
possible. Also present in Figure 2 is the use of standardised and user-created
types. In our approach, we define these explicit type hierarchies to provide a
consistent and unified way to access and reason about the information contained.

In our approach, the knowledge graph is divided into built-in/standardised
types and instances, and user-defined ones. This encourages levels of consensus,
where the upper levels have (potentially) an international consensus, and the
user can define organisation-wide types and instances as required.

For example, the current prototype defines built-in types similar to those
defined in the Sensor-Observation-Sampling-Actuator ontology (SOSA) [9]. This
ontology is a W3.org standard suitable to representing sensors, observations, and
experiments in a cyber-physical system. Selecting a subset of this ontology allows
the user to exploit the person-hours taken by others to construct a consistent
and expressive ontology, while retaining the flexibility to define their own types.

Figure 3 shows an example of type hierarchies implemented within our pro-
totype knowledge graph. The upper levels are type hierarchies which form the
structural backbone of knowledge graphs. The lower levels are type hierarchies
in the knowledge graph prototype representing useful formalisms. These hierar-

Structuring and Accessing Knowledge for Historical and Streaming DTs 9

Core | CoreDataIayer CoreDatatype |<—| CoreProcedure | CoreArch

A
| CorePPT /(| CoreModS|m ‘QCoreExperimenq
A

Built-in IActionLanguageHDEVSl IFTGPMr |Va|iditylFrames[

Fig. 3: Layered type hierarchies.

chies are not fixed, but instead represent that layered approach needed to have
a consensus-based yet flexible type system. Of course, the user is able (and en-
couraged) to develop their own layers beneath (or above, or alongside...) those
layers shown here to ensure flexibility and relevance to the concepts required by
the organisations.

For example, the ValidityFrames type hierarchy in Figure 3 includes types
relating to our previous research in defining the conditions and degree in which
a model is valid with respect to a real-world system [17,18]. This could be the
temperature in which a model is valid (such as it is invalid below freezing), or
define the set of training data for a model (such that a neural net has only
been trained on daytime images and not night-time images). A type VEModel
is defined which denotes the model of interest. As this model should also be
contextualised through connection to other modelling and simulation concepts,
the ValidityFrames type hierarchy imports the Modelling and Simulation type
hierarchy (CoreModSim), and the VFModel type is denoted as a sub-type of the
CoreModel type in that type hierarchy.

4.4 Data Layer

For practical reasons, in our approach the knowledge graph cannot contain all
DIKW. This is due to the massive amounts of data incoming from assets in the
organisation, which could quickly overwhelm the storage, reasoning, or querying
capacities of the knowledge graph. Instead, our approach proposes a dedicated
data layer between the knowledge graph and the underlying data stores. Thus
this knowledge graph could be termed as a ‘virtual’ knowledge graph.

Figure 4 shows our layered knowledge graph approach. At the bottom are the
sources of raw data, such the sensors of machines and organisation databases.
Unique identifiers stored in the knowledge graph point to these sources of infor-
mation. For example, the location of a data series may be stored in the knowledge
graph, but not the individual data points themselves. The adapter layer is then
able to resolve both the element type and the unique identifier to determine how
and where to access the underlying data.

The knowledge graph requires neutral access to these data sources through
a data adapter layer. This layer is intended to shield the knowledge graph from
knowing the particulars of the data storage, which is quite technical and subject
to constant revision. Examples of this include the database API, SQL queries,

10 B. Oakes et al.

Knowledge Graph

Platform-Independent Unique Identifiers

Physical
Lookup Adapter Layer (to tool and storage APIS)
AutoCAD || Simulink | [OpenTSDB||Cosmos_DB SESSL
Physical ‘
CAD Lumped Time P t -
Asset Model | ||Parameter||l Series g);jtt;c Ex;;/(ler:jmlent |Z|
Model Data ode

Fig. 4: The layered approach of the knowledge graph upon the data layer.

or OPC-UA (https://opcfoundation.org) commands necessary to access informa-
tion, or the login information for repositories. Separating these more technical
details out from the knowledge graph allows for greater scalability through the
removal of transitory information and better handling of heterogeneous machine
configurations. Thus, the data layer forms the abstracting barrier between the
virtual knowledge graph (dealing with reasoning concerns) and the technical
data sources (dealing with scalability and storage concerns).

For example, the knowledge graph may indicate that humidity information
for a particular machine is stored as a HumidityMeasurement instance stored
as a TimeSeries at a particular location. Typing this information allows for
the knowledge graph to indicate constraints on the data, and precisely specify
the type of information stored, while leaving the actual values to be stored
in an appropriate way until explicitly requested by a user or application. This
TimeSeries can be explicitly linked to the Humidity data type, allowing for a user
to directly query, “where is humidity information for this machine?”. Further
information and knowledge can also be inferred with further connections, to
indicate the experimental conditions a TimeSeries was produced from or the
Observation procedure used.

4.5 Accessing the Knowledge Graph

In the overview shown in Figure 1, there is a component which represents the user
accessing the knowledge graph, or an application on their behalf. This application
could be a dashboard, reports, or any other visualisation. Once the information
is placed in the knowledge graph, there must be an easy-to-use method for users
and applications to extract this information. An example could be to ask for
the set of all physical quantities in the knowledge graph, or which data stores
contain temperature information.

As with any API, there are many challenges to provide a scalable, expres-
sive query interface to the knowledge graph. Currently, we consider the API
specification language GraphQL (https://graphql.org) to be a feasible approach.
This query language takes queries defined in a JSON-like format, and evaluates

Structuring and Accessing Knowledge for Historical and Streaming DTs 11

the fields requested using defined resolvers [8]. This approach again shields the
user from understanding the underlying technology used to store the knowledge
graph.

5 Constructing Digital Twins

This section will discuss the contribution of this paper concerning the construc-
tion of digital twins (DTs) using a knowledge graph (KG). In particular, an
example timeline is shown noting how the historical and streaming DTs are
created from the KG, and in connection with the KG.

Figure 1 relates the different components of our approach. However, the time
dimension is not represented in that figure and will instead be discussed here.
In particular, this section deals with relation C' in Figure 1.

A portion of our current research is to create a workflow for how the KG,
physical system, and DTs could be created either sequentially or in parallel.
However, for brevity, this work will instead present an example timeline, showing
one possible path for creation of all components. Figure 5 demonstrates this
timeline as the construction of a KG, and then different types of DTs being
built from it. In this figure, time increases to the right and the arrows between
boxes represent a manual or automatic transfer of DIKW between the KG and
the DTs.

Physical System

Historical DT \ * * * *l

DM | DS | DT |

A * Streaming DT *

| |
Knowledge Graph Y A y

DM

| DS
T Historical DT Streaming DT f T
——————— > Physical System |

Fig. 5: Example timeline for Digital Twin creation.

5.1 Building the Knowledge Graph

The first step in the construction of the DTs is the building up of the KG itself. In
Figure 5, this happens before any digital twins are built, where the user imports
data, information, knowledge, and wisdom (DIKW) from existing repositories
and creates types and instances. Conceptually, this KG exists throughout the
lifetime of the organisation. As DT's are built, they are built using the knowledge
in the KG, as well as connect to the KG to deposit new DIKW.

12 B. Oakes et al.

5.2 Digital Twin Types

Figure 5 has boxes representing the DTs which contain ‘DM’; 'DS’, and 'DT".
These refer to the digital model/shadow/twin classifications from Kritzinger et
al. which classify based on the manual or automatic connection with the physical
system [10]. Viewed as a timeline, it is clear that the type of DT can change over
time. In particular, it is likely that each DT is ‘promoted’ with more automation,
as this allows for more insight and control of the physical system.

In particular, digital models are relevant for questions such as in design-space
exploration [17]. In the lower-right part of Figure 5 a historical DT is a DM and
is used to create the physical system. DSs can be used for anomaly detection
and correlation questions, as found in the drivetrain use case. Finally, DTs can
be used for adaptation and real-time control.

5.3 Building the Digital Twins

Once the KG is created, a few different paths exist for the creation of the DTs.
In the lower-right of Figure 5, a historical DT is used to gather DIKW about
the system, such as designing the most effective sensor for the drivetrain use
case. Then, a deployment occurs, where the models and sensors are deployed
onto hardware and connected to the physical system.

On the top-left of Figure 5, a DM is created from the KG to gain insights
about the system. Insights are then relayed back to the KG, with the com-
munication interleaved with the creation of the DT on the bottom-right. This
represents how the queries to the KG are “snapshots” in time, and how the KG
evolves as information comes back from the DTs.

Finally, in the top-right of Figure 5, a DS is created which is in connection
with the physical system, and is not reliant on information from the KG. It is
then promoted to a DT which exports DIKW to the KG.

6 Conclusion

This paper has presented our insights on the issue of combining a knowledge
graph (KG) layered upon an organisation’s data repositories with the process of
constructing Digital Twins (DTs). In particular, the components of this approach
are seen in Figure 1, with an example timeline in Figure 5. These DTs, separated
into historical and streaming, allow answering different types of queries such as
about correlations, optimisations, and anomaly detection.

Our future research involves clarifying the possible workflows for creating
these DTs, their possible architectures, and a classification of their features.

Acknowledgments

This research was supported by Flanders Make, the strategic research center
for the Flemish manufacturing industry, and partially funded by the DTDesign
ICON (Flanders Innovation & Entrepreneurship FM/ICON::HBC.2019.0079)

project.

Structuring and Accessing Knowledge for Historical and Streaming DTs 13

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Abu-Salih, B.: Domain-specific knowledge graphs: A survey. Journal of Network

and Computer Applications 185, 103076 (2021)

Banerjee, A., Dalal, R., et al.: Generating digital twin models using knowledge
graphs for industrial production lines. In: Workshop on Industrial Knowledge
Graphs (2017)

Buchgeher, G., Gabauer, D., et al.: Knowledge graphs in manufacturing and pro-
duction: A systematic literature review. IEEE Access 9, 55537-55554 (2021)
Chukkapalli, S.S.L., Mittal, S., et al.: Ontologies and artificial intelligence sys-
tems for the cooperative smart farming ecosystem. IEEE Access 8, 164045-164064
(2020)

Ehrlinger, L., W63, W.: Towards a definition of knowledge graphs. SEMANTiICS
(Posters, Demos, SuCCESS) 48, 1-4 (2016)

Grieves, M., Vickers, J.: Digital twin: Mitigating unpredictable, undesirable emer-
gent behavior in complex systems. In: Transdisciplinary perspectives on complex
systems, pp. 85-113. Springer (aug 2017)

Hankel, M., Rexroth, B.: The Reference Architectural Model Industrie 4.0. ZVEI:
Die Elektroindustrie (2015)

Hartig, O., Pérez, J.: Semantics and complexity of GraphQL. In: Proceedings of
the 2018 World Wide Web Conference. pp. 1155-1164 (2018)

Janowicz, K., Haller, A., et al.: SOSA: A lightweight ontology for sensors, obser-
vations, samples, and actuators. Journal of Web Semantics 56, 1-10 (2019)
Kritzinger, W., Karner, M., et al.: Digital twin in manufacturing: A categorical
literature review and classification. IFAC-PapersOnLine 51(11), 1016-1022 (2018).
https://doi.org/10.1016/j.ifacol.2018.08.474

Li, X., Wang, L., et al.: Framework for manufacturing-tasks semantic modelling
and manufacturing-resource recommendation for digital twin shop-floor. Journal
of Manufacturing Systems 58, 281-292 (2021)

Madni, A.M., Madni, C.C., Lucero, S.D.. Leveraging digital twin tech-
nology in model-based systems engineering. Systems 7(1), 7 (jan 2019).
https://doi.org/10.3390/systems7010007

Oakes, B.J., Parsai, A., et al.: Improving digital twin experience reports. In: Pro-
ceedings of the 9th International Conference MODELSWARD. pp. 179-190. IN-
STICC, SciTePress (2021). https://doi.org/10.5220/0010236101790190

Opdahl, A.L., Tessem, B.: Ontologies for finding journalistic angles. Software and
Systems Modeling 20(1), 71-87 (2021)

Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy. Journal
of Information Science 33(2), 163-180 (2007)

Rozanec, J.M., Jinzhi, L.: Towards actionable cognitive digital twins for manufac-
turing. In: Second International Workshop on Semantic Digital Twins (2020)
Van Acker, B., Oakes, B.J., et al.: Validity frame concept as effort-cutting tech-
nique within the verification and validation of complex cyber-physical systems. In:
Proceedings of the 23rd ACM/IEEE International Conference MODELS-C. pp.
1-10 (2020)

Van Mierlo, S., Oakes, B.J., et al.: Exploring validity frames in practice. In: Interna-
tional Conference on Systems Modelling and Management. pp. 131-148. Springer
(2020)

