
DTChecker: A Real-Time Signal Monitoring and
Property Specification Tool for Digital Twins

Abdelhamid Rouatbi
Université de Montréal

abdelhamid.rouatbi@umontreal.ca

Eugene Syriani
Université de Montréal
syriani@iro.umontreal.ca

Bentley Oakes
Polytechnique Montréal

bentley.oakes@polymtl.ca

Author pre-print. Publication accepted for MODELS 2025.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any cur-
rent or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collec-
tive works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Specifying and monitoring temporal requirements
in Digital Twin (DT) systems is challenging, as writing formal
specifications in temporal logic is often complex and inaccessible
to domain experts. This typically necessitates close collaboration
with software engineers, introducing communication overhead
and slowing development. We present DTChecker, a reusable self-
contained monitoring tool for DT systems built on RabbitMQ-
based architectures. The tool enables domain experts to write
temporal specifications in a browser-based editor with language
server support. These specifications are automatically translated
into Signal Temporal Logic (STL) formulas and evaluated in
real-time on data streams from sensors or services. Robustness
scores are streamed to a front-end dashboard to visualize how
well the system satisfies the specified requirements over time. This
enables domain experts to write and verify temporal properties
easily, thereby improving the real-time monitoring of the DT. We
demonstrate the tool through integration with an open-source
incubator DT case study.

Video demonstration: https://youtu.be/elyhSOiGuc4?si=V-
2TTsXgRcYaAU2X

Index Terms—Digital Twins, Model-Driven Engineering, Run-
time Verification, Signal Temporal Logic.

I. INTRODUCTION

Digital Twins (DTs) are virtual replicas of physical systems
and are one of the leading technologies in the fourth industrial
revolution. A pressing topic in this field is the development
of reusable assets to accelerate the development of DTs [1].
In this work, we are particularly interested in the development
of reusable components to efficiently provide the monitoring
capabilities of DTs. Monitoring services allow stakeholders to
observe the behavior of the Physical Twin through metrics as
it evolves over time, offering support for decision-making [2].

This process can be further enhanced by using Runtime
Verification techniques that can evaluate the correctness of
the behavior of the system under study with respect to some
property by analyzing execution traces [3]. Such properties
are specified by using proper formalisms such as temporal
logic (TL). Signal Temporal Logic (STL) [4] enables reasoning
about continuous real-time properties, making it suitable for
monitoring the temporal properties of real-time DTs.

Manually specifying properties with TL is known as a
challenging task [5]. Autili et al. have presented a textual
Domain-Specific Language (DSL) to abstract away the difficult
syntax of TL [6]. However, DSLs such as these have not yet

been integrated into reusable and open-source tools for the
monitoring of DTs.

Our contribution DTChecker is thus a reusable, self-
contained DT monitoring service that provides:

• STL run-time verification using property specification
patterns.

• A browser-based editor with parsing, validation, and code
completion for specifying DT behavior.

• Automatic translation of specifications into executable
STL code and monitoring dashboards.

We describe our tool using a running example of beer
fermentation in the next section. This is followed by back-
ground information relevant to our approach. We then detail
the technical architecture and usage of DTChecker, and finally
present an example of DTChecker’s use on the incubator DT
case study.

II. RUNNING EXAMPLE: BEER FERMENTATION

A. System and DT

The fermentation process in beer making is a complex bio-
chemical transformation in which yeast consumes fermentable
sugars to produce ethanol, carbon dioxide, and a variety of
flavor compounds. This process unfolds over weeks and is
highly sensitive to environmental factors, including temper-
ature, pH, dissolved oxygen, and sugar concentration. Each
stage of fermentation requires specific conditions to ensure
efficient yeast performance and flavor development. Progress
is tracked through indicators such as pH and density shifts,
and parameters like conductivity and temperature influence
the quality and consistency of the final product. Because of
its biological complexity and sensitivity to external factors,
fermentation must be carefully monitored and controlled to
achieve consistent results across batches.

A DT can enhance the fermentation process by continuously
collecting and synchronizing data from multiple sensors, pro-
viding brewers with insights into fermentation dynamics [7].
This reduces reliance on delayed manual sampling and enables
early detection of anomalies, such as bacterial contamination
or equipment failure.

B. Need for Temporal Logic

By integrating temporal logic into the monitoring frame-
work, brewers can move beyond simple threshold-based alerts
and monitor how they behave in relation to time and context.

https://orcid.org/0009-0007-1617-6827
https://orcid.org/0000-0001-6527-1651
https://orcid.org/0000-0001-7558-1434
https://conf.researchr.org/home/models-2025
https://youtu.be/elyhSOiGuc4?si=V-2TTsXgRcYaAU2X
https://youtu.be/elyhSOiGuc4?si=V-2TTsXgRcYaAU2X


For example, instead of just checking whether the temperature
exceeds a limit, we could specify that “if the temperature
rises above 32°C, the cooling system must activate within
10 minutes and bring the temperature back down within 30
minutes”. Such specifications can be continuously evaluated
on live sensor data to compute robustness scores that indicate
how close the system is to violating a requirement or how
severe the violation is. This provides actionable insights for
managing safety and quality.

III. BACKGROUND

A. Signal Temporal Logic

STL is a specification language for dense-time real-valued
signals properties of continuous systems. Such specifications
are used by verification algorithms that check whether the
specified properties are satisfied or not.

Offline monitoring refers to the case where the signal data
is assumed to be complete and available before the evaluation.
While this approach is valid for simulation-based validation,
it is not ideal for the monitoring of real-time systems because
the evaluation of a property at a certain timestamp could
depend on data observed at a future time. Meanwhile, online
monitoring evaluates properties incrementally as data becomes
available, without access to future values, by transforming the
formula and postponing the evaluation to a time where all
necessary data is available [8].

The evaluation of STL specifications outputs a quantitative
metric called robustness that describes the degree of satisfac-
tion or violation of the specified properties, providing addi-
tional feedback on the system’s behavior. A positive robustness
implies that the property is satisfied, while a negative value
indicates it is violated.

In the context of brewing, we might consider the formula
(1), which states that the temperature inside the fermentation
tank should always be lower than 30°C.

□(T < 30) (1)

Fig. 1 showcases two different scenarios and their corre-
sponding robustness evaluated against this specification.

Fig. 1. Two temperature readings evaluated against the specification described
by the formula (1).

B. Property Specification Patterns

Despite the effectiveness of formal specification languages,
their complexity still constitutes a major challenge, requiring
practitioners to be properly trained [9]. To bridge this gap,

Dwyer et al. introduced Property Specification Patterns, a
collection of formalism-independent abstractions of specifica-
tions [10]. The patterns were identified by analyzing multiple
examples of property specification. For example, the Response
pattern describes the case where the occurrence of one state
or event must eventually be followed by the occurrence of
another. In addition, patterns are combined with a scope that
restricts the domain where the property should hold. Autili
et al. extended this work by identifying more patterns and
presenting a structured English grammar, enabling an easier
specification process at a higher level of abstraction [6].

IV. DTCHECKER TOOL

A. Architecture Overview

Fig. 2 presents the architectural overview of our DTChecker
tool1. The domain experts write specifications in a browser-
based text editor, which interacts with a language server to
provide parsing, code completion, and validation.

Once finalized, the specifications are sent to a template-
based code generator. This generator outputs a script where
each specification is transformed into an STL formula and each
signal is mapped to a corresponding RabbitMQ data stream.
Signals may originate from sensor readings or other DT
services, making the monitoring more flexible and enabling
broader integration across components. The script is then
automatically executed by the back-end server. From that point
on, every signal value published by the message broker triggers
the evaluation of the related specifications. Evaluation and
robustness computation are handled by the RTAMT library [8].

The output of an evaluation is a robustness score, which is
streamed back to the front-end in real time via a Server-Sent
Events channel and is used to update the dashboard.

Fig. 2. DTChecker tool architecture.

B. Modeling Specifications

The specification of properties is carried out using a textual
DSL based on an Xtext grammar described in listing 1. Each
signal is defined by a name attribute, which serves as its
identifier, and a queueName attribute, which specifies the name

1Available on GitHub (https://github.com/AbdelhamidRouatbi/DTChecker/)

https://github.com/AbdelhamidRouatbi/DTChecker/


of the RabbitMQ queue that provides its values. Specifications
are defined by a name attribute, along with a combination of
scope and pattern. In this combination, we refer to comparative
boolean expressions where the operands may be signal values
or constants to define the property we want to monitor.

Some patterns also require the definition of time bounds to
constrain the temporal scope of the property. This is essential
in the context of online monitoring, which cannot accommo-
date properties with unbounded or open-ended time intervals,
as doing so would imply potentially waiting indefinitely for a
condition to be satisfied or violated.

Model:
Signals+=Signal*
Specifications+=Specification*;

Signal:
’signal’ name=ID ’from’ queueName=STRING;

Specification:
’specification’ name=ID ’:’
’scope’ scope=Scope
’pattern’ pattern=Pattern;

Response:
’if’ p=Expression ’then-in-response’

s=Expression (’eventually holds’)?
time=Time;

Expression:
(s1=[Signal] | f1=Number) operator=(’>’ | ’<’

| ’=’) (s2=[Signal] | f2=Number);

Listing 1. DSL Grammar snippet

C. Code Generator
The Xtend template-based code generator handles the trans-

lation of specification patterns into temporal logic formulas.
We adapted the detailed mapping table from patterns to Metric
Temporal Logic provided by Autili et al. [6] to produce
equivalent formulas in STL. Every combination of scope and
pattern has a template to produce the corresponding STL
formula. Listing 2 illustrates the template for the Response
pattern with Global scope.

def static genGlobalScope(Specification spec){
var pattern = spec.pattern as Response
var p = expression(pattern.p)
var s = expression(pattern.s)
var t = time(pattern.time)
return ‘‘‘always[0,0](«p» implies(

eventually «t» «s»)’’’
}

Listing 2. Xtend template for generating STL formula for the Response
pattern with Global scope.

D. Example Property
To demonstrate the usefulness of this DSL, let us consider

the following property: Between the time yeast is pitched and

the end of active fermentation, if the temperature drops below
18°C, then it must return above 19°C within 1 hour. The
corresponding STL formula would be:

□
((
¬(fermentation = 0) ∧ (true U (yeast_pitched = 1))

∧ (temperature < 18)
)
→ ♢[0,3600](temperature > 19)

)
(2)

While this formula captures the intended timing and scope
constraints, its low-level temporal logic syntax makes it diffi-
cult to read, understand, and maintain, especially for domain
experts who are unfamiliar with formal methods. However,
using our DSL, the same requirement can be expressed in a
much more intuitive and readable form, as shown in listing 3.

1 specification TemperatureRegulation :
2 scope Between yeast_pitched=1 and

fermentation=0
3 pattern Response:
4 if temperature<18 then-in-response

temperature>19 within 1 h

Listing 3. Temperature regulation property for fermentation process.

In this specification, the yeast_pitched and fermentation
signals are Boolean indicators denoting whether the yeast has
been pitched and whether the fermentation process is active,
respectively. The temperature signal is the temperature value
inside the fermentation tank. We apply the Response pattern
to express that, when the temperature drops below 18°C, it
must rise above 19°C within one hour as a corrective action.
The Between scope is used to express that this property should
always hold between the time yeast is pitched and the end of
active fermentation.

E. Usage

Before using the tool, it must first be configured by editing
a configuration file. DT developers are required to specify
the path to the Python executable, as well as the ports for
the RabbitMQ server, the Python back-end, and the front-end.
After launching the service using the launch.py script, the
editor can be accessed in a web browser by navigating to
localhost:<front-end-port> in a web browser.

From the web interface, domain experts can define signals
and specify properties. The editor offers code completion
features to simplify the process. Once monitoring begins by
clicking on the button show in Fig 3.2, graphs automatically
appear in the right-hand panel as evaluations are received from
the back-end verifier. These graphs display the evolution of
robustness over time for each specified property, shown in
Fig. 3.4. Requirements that are violated are displayed in red,
and those that are satisfied are shown in blue. Additionally,
each defined signal has its own graph that visualizes its values
over time, providing further insight.

If domain experts wish to focus on a particular property,
they can select it from a tab menu, as shown in Fig. 3.3.
This filters the view to show only the robustness graph of the



Fig. 3. Incubator monitoring.

selected property and the signal graphs that influence it. The
set of signals affecting a given property can be identified by
inspecting the abstract syntax tree of the model.

F. Integration into DTs

The tool is implemented as a self-contained monitoring
service that can be seamlessly integrated into DT architectures
using RabbitMQ as a message broker. RabbitMQ was chosen
for its widespread adoption and reliability in cyber-physical
system deployments. Because DTChecker interacts only with
RabbitMQ, all physical system details are abstracted away, en-
abling integration with different platforms and configurations.

However, the tool extracts only signal values from the mes-
sages and assumes the evaluation time as the timestamp of the
reading, without accounting for communication delays. This
limitation makes the tool unsuitable for monitoring systems
where precise timing is critical, particularly when evaluating
properties defined over very short time intervals.

V. DEMONSTRATION: INCUBATOR DIGITAL TWIN

We demonstrate our tool by integrating it into a free open-
source project of an incubator DT [11].

The incubator is a compact cyber-physical system designed
to regulate and maintain a target temperature within an insu-
lated container. It comprises a styrofoam box equipped with
a heatbed for thermal actuation, a fan for air circulation, and
multiple temperature sensors for feedback.

A Raspberry Pi serves as the controller, executing a simple
control strategy and interfacing with all components via a
custom PCB. Communication between software modules and
the DT is handled through a RabbitMQ server. The system
supports real-time monitoring and actuation, making it suitable
for evaluating DT technologies.

We use our tool to monitor four functional and/or safety-
critical properties of the incubator:

• The temperature inside the box must never exceed 32°C.
• If the temperature inside the box gets close to 32°C, the

heater must turn off shortly after.
• The temperature inside the box must never drop below

30°C.
• The fan must be activated whenever the heater is on.

Fig. 3.1 illustrates how these requirements are modeled using
the DSL.

Fig. 4 shows the generated graphs after 12 minutes of
monitoring. The overheatingPrevention requirement is vio-
lated because robustness is negative in the first plot. This
indicates that the system fails to respond appropriately when
the temperature exceeds the desired range. As a consequence,
the noOverheating requirement is also violated. By hovering
over the graph, we can read robustness values at specific times-
tamps to assess the severity of the violations. However, the
noUnderheating and fanWorking requirements remain satisfied
throughout the observation period, indicating proper function-
ing of the incubator with respect to these specifications.

VI. RELATED WORK

Multiple other works have addressed similar goals in run-
time verification and monitoring in general and in the context
of DTs [12]. As representative examples, NuRV extends the
nuXmv model checker by enabling runtime verification of
Linear Temporal Logic (LTL) properties [13]. It supports
online and offline monitoring modes and generates monitoring
code in multiple languages. Bernaerts et al. introduced a
contract-based design approach for formalizing requirements
of complex, safety-critical automotive components [14]. It uses
property specification patterns to replace ambiguous natural
language requirements. These patterns are automatically trans-
lated into STL formulas, which are then verified on simulation
traces. While this work is similar to ours, we bring novelty
by implementing online monitoring of a system’s behavior.



Fig. 4. Incubator monitoring dashboards

We follow a similar approach to Kristensen et al., where
LTL specifications of DTs are evaluated upon receiving input
signals from a message broker [15].

VII. CONCLUSION

In this paper, we present DTChecker, a Web-based modular
DT service that relies on a DSL to specify STL requirements
and generates dashboards from these specifications to mon-
itor robustness scores on live signal data from the system.
DTChecker accelerates DT development by allowing domain

experts to specify temporal requirements without writing low-
level code. By providing a ready-to-use monitoring solution,
DTChecker also reduces the need to develop custom services
for temporal specification and evaluation.

Our primary focus has been on supporting DT development,
but the underlying approach is general and can be applied to
other systems requiring temporal requirement monitoring.

Future work will focus on improving the visualization of the
graphs and containerizing the tool to facilitate its deployment.
We will also address the current limitations on the STL
specifications that require strict timing constraints and the
assumption of noise-free sensor data, which may not hold in
real-world scenarios.

REFERENCES

[1] P. Talasila, C. Gomes, L. B. Vosteen, H. Iven, M. Leucker, S. Gil,
P. H. Mikkelsen, E. Kamburjan, and P. G. Larsen, “Composable
digital twins on digital twin as a service platform,” SIMULATION,
p. 00375497241298653, 2024.

[2] M. Frasheri, P. Katsaros, A. Iosifidis, S. T. Hansen, C. Gomes, V. Tang,
and P. G. Larsen, “System monitoring through a digital twin,” in The
Engineering of Digital Twins, pp. 189–207, Springer, 2024.

[3] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, Introduction to
Runtime Verification, pp. 1–33. Cham: Springer Publishing, 2018.

[4] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems (Y. Lakhnech and S. Yovine, eds.), (Berlin,
Heidelberg), pp. 152–166, Springer Berlin Heidelberg, 2004.

[5] P. Bellini, P. Nesi, and D. Rogai, “Expressing and organizing real-
time specification patterns via temporal logics,” Journal of Systems and
Software, vol. 82, no. 2, pp. 183–196, 2009.

[6] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620–638, 2015.

[7] P.-E. Goffi, R. Tremblay, and B. Oakes, “Engineering a digital twin
for the monitoring and control of beer fermentation sampling,” in
Proceedings of the 28th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings,
2025.

[8] D. Nickovic and T. Yamaguchi, “RTAMT: online robustness monitors
from STL,” CoRR, vol. abs/2005.11827, 2020.

[9] C. Hahn, F. Schmitt, J. J. Tillman, N. Metzger, J. Siber, and
B. Finkbeiner, “Formal specifications from natural language,” 2022.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99, (NY,
USA), p. 411–420, Association for Computing Machinery, 1999.

[11] H. Feng, C. Gomes, C. Thule, K. Lausdahl, M. Sandberg, and
P. G. Larsen, “The incubator case study for digital twin engineering,”
2021. Code for the incubator DT is found at https://github.com/
INTO-CPS-Association/example_digital-twin_incubator.

[12] Z. Hóu, Q. Li, E. Foo, J. S. Dong, and P. de Souza, “A digital twin
runtime verification framework for protecting satellites systems from
cyber attacks,” in 2022 26th International Conference on Engineering
of Complex Computer Systems (ICECCS), pp. 117–122, 2022.

[13] A. Cimatti, C. Tian, and S. Tonetta, “Nurv: A nuxmv extension for run-
time verification,” in Runtime Verification (B. Finkbeiner and L. Mariani,
eds.), (Cham), pp. 382–392, Springer International Publishing, 2019.

[14] M. Bernaerts, B. Oakes, K. Vanherpen, B. Aelvoet, H. Vangheluwe,
and J. Denil, “Validating industrial requirements with a contract-based
approach,” in 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C),
pp. 18–27, 2019.

[15] M. Kristensen, A. Bonizzi, C. Gomes, S. Hansen, C. Isasa, H. Iven,
E. Kamburjan, P. Larsen, M. Leucker, P. Talasila, V. Tang, S. Tonetta,
L. Vosteen, and T. Wright, “Runtime verification of autonomous systems
utilizing digital twins as a service,” pp. 121–127, 09 2024.

https://github.com/INTO-CPS-Association/example_digital-twin_incubator
https://github.com/INTO-CPS-Association/example_digital-twin_incubator

	Introduction
	Running Example: Beer Fermentation
	System and DT
	Need for Temporal Logic

	Background
	Signal Temporal Logic
	Property Specification Patterns

	DTChecker Tool
	Architecture Overview
	Modeling Specifications
	Code Generator
	Example Property
	Usage
	Integration into DTs

	Demonstration: Incubator digital twin
	Related Work
	Conclusion
	References

