
Validity Frame Concept as Effort-Cutting Technique within the
Verification and Validation of Complex Cyber-Physical Systems

Bert Van Acker
Bentley James Oakes

Mehrdad Moradi
Paul Demeulenaere

Joachim Denil
bert.vanacker@uantwerpen.be
bentley.oakes@uantwerpen.be

mehrdad.moradi@uantwerpen.be
paul.demeulenaere@uantwerpen.be

joachim.denil@uantwerpen.be
University of Antwerp and Flanders Make vzw, Belgium

ABSTRACT
The increasing performance demands and certification needs
of complex cyber-physical systems (CPS) raise the complexity
of the engineering process, not only within the development
phase, but also in the Verification and Validation (V&V)
phase. A proven technique to handle the complexity of CPSs
is Model-Based Design (MBD). Nevertheless, the verification
and validation of complex CPSs is still an exhaustive process
and the usability of the models to front-load V&V activities
heavily depends on the knowledge of the models and the
correctness of the conducted virtual experiments. In this pa-
per, we explore how the effort (and cost) of the V&V phase
of the engineering process of complex CPSs can be reduced
by enhancing the knowledge about the system components,
and explicitly capturing it within their corresponding valid-
ity frame. This effort reduction originates from exploiting
the captured system knowledge to generate efficient V&V
processes and by automating activities at different model life
stages, such as the setup and execution of boundary-value
or fault-injection tests. This will be discussed in the context
of a complex CPS: a safety-critical adaptive cruise control
system.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Computing methodologies → Model ver-
ification and validation.
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1 INTRODUCTION
In the development of software intensive systems such as
the avionics and automotive domains, engineers need to
cope with highly complex devices composed of different in-
teracting and deeply intertwined components [10]. Devel-
opment of these cyber-physical systems (CPS) is becoming
increasingly complex, caused by (i) the synergistic interac-
tion between software and physical elements and (ii) the
vast demand for improved performance, e.g. faster and safer
control, autonomous driving, or reduced energy consumption.
A well-proven design technique for the design of CPSs is
Model-Based Design. Model-Based Design (MBD) employs
(mathematical) modeling to design, analyze, verify and val-
idate dynamic and complex systems [3]. More specifically,
MBD uses models to represent a system’s elements and their
relationships, where models serve as input and output at all
stages of system development, from conceptual design phase
and continuing throughout development and later life cycle
phases [7]. The following activities are identified in the typical
design process of CPSs:

∙ Concept definition: The system-under-design and its
influencing environment is interpreted, scoped, and the
expected behavior is defined, which will be used to
satisfy its goal or purpose.

∙ Design: Implementation of the system-under-design by
the engineer(s)

∙ Integration: Integration of the implemented system-
under-design

https://doi.org/10.1145/3417990.3419226
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∙ Validation: The process of assessing how well the be-
havior of the system-under-design is emulated by its
virtual counterpart.

∙ Verification: The process of assessing the implemented
behavior of the system-under-design against the defined
expected behavior. The expected behavior can e.g. be
defined using (system) requirements.

Problem statement. There exists a tight coupling between
the Design and Integration activities of a design process and
the Verification and Validation (V&V) activities. As the re-
quirements for a system-under-design become more complex,
it becomes more difficult to design the system and perform
the (V&V) activities. Validation is a key activity within
a MBD process, as it enables the engineer to determine
the model fidelity, the degree to which a model faithfully
represents the source system counterpart [11, 26]. This is
inextricably connected to the properties-of-interest of the
source system which are encoded in the virtual model. The
model fidelity is dependent on numerous influencing factors,
ranging from the implementation details to the execution
environment in which the model is used. An example is a
reduced-order model compared to a high-fidelity model, or
whether the model is simulated using a continuous or a dis-
crete solver. The transition from the conventional software
development (via hand-coding) to model-based development
methods helps abstract away unnecessary details in a manner
that increases the potential for easy validation and verifica-
tion. The model-based approach consists of four elements [17]:
(i) models as executable specification, used as common under-
standing for different stakeholders, such as managers, control
and embedded engineers, etc. (ii) design with simulation, val-
idating and verifying the model behavior in a (semi-) virtual
environment (iii) implementation through code generation,
ECU code generated from the models and (iv) continuous
test and verification. More specifically, some V&V activities
can be front-loaded in the design process, identifying gaps
and errors in the system specification in a very early stage
of the development. For example, the authors in [16] used
model-based testing which utilized front-loaded knowledge
about hardware and software. These V&V activities can be
carried out at the different stages of the system life cycle:

∙ Model level or model-in-the-loop (MiL): Validation of
the models behavior within a virtual simulated envi-
ronment.

∙ Software level or software-in-the-loop (SiL): Validation
of ECU code, generated from the model, within a
virtual simulated environment.

∙ Processor level or or processor-in-the-loop (PiL): Vali-
dation of the deployed code onto the target hardware,
within a virtual simulated environment.

∙ Hardware level or or hardware-in-the-loop (HiL): Vali-
dation of the deployed code onto the target hardware,
interacting with the real-world via real-time simulated
sensor, actuator and response behavior.

The key difference between the different stages is shown in
Figure 1. This shows a conceptual overview of the interplay

between virtual and/or physical simulation elements for the
aforementioned stages. The model or code under study is
presented in yellow, while the analysis functions are green.
The virtual links between the simulation elements are shown
in green and the physical links in blue.

(a) Mil and SiL
(b) PiL and HiL

Figure 1: Conceptual view on different stages

Contribution. This work concerns: (i) capturing knowledge
about complex CPSs (and their environment) with one or
more models-of-the-physics and (ii) exploiting this knowl-
edge to reduce the effort of the V&V process. We propose
the validity frame (VF) concept to capture this knowledge,
as VFs enable reasoning about the validity of components
by explicitly capturing everything that alters the validity of
models within their corresponding VF. Section 4 describes
the objective, scope, and structure of VFs, which include in-
formation such as the solver used for a model and the testing
procedure to ensure that the solver produces a correct result.

Therefore, the concrete contribution of the paper is de-
tailing how data and processes contained within the VFs
can be exploited to reduce the complexity and effort of the
V&V process. That is, how to store and use information
for: (i) employing processes supporting V&V activities, (ii)
generating, customizing, and optimizing V&V activities, and
(iii) coordinating and automating V&V activities.

Paper Organization. Section 2 presents an illustrative ex-
ample. Section 3 gives an overview of the related work. Sec-
tion 4 discusses the enabling technique of VFs. Section 5
shows the exploitation of the VF concept to support V&V
activities. Section 6 presents benefits and limitations, while
Section 7 summarizes the paper and defines future work.

2 RUNNING EXAMPLE
This running example builds upon previous work [24], where
we focused on a small subset of the complete safety-critical
adaptive cruise control (ACC). The ACC is an advanced
driver assistance system (ADAS) which is already widely
available in commercial road vehicles but is interesting as
a system-under-study because it is one of the precursors of
fully autonomous vehicles. ACC is a (radar-based) system,
which is designed to enhance driving comfort and convenience
by relieving the driver of the need to continually adjust his
speed to match that of a lead vehicle.

Figure 2 presents the two modes of the ACC. In the speed
control mode, the goal is to control the ego vehicle such that
the velocity of the ego vehicle is maintained as the desired
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Figure 2: Concept view of the adaptive cruise control [15]

velocity set by the driver (𝑉ego = 𝑉set). The second spacing
control mode occurs when the ego vehicle is within the safe
distance to the lead vehicle. Here, the goal is to control the ego
vehicle such that the relative distance between the ego and
lead vehicle is held constant to the user-defined safe distance
(𝐷dist = 𝐷safe). The ACC algorithm automatically switches
between modes. This way, the spacing control is activated
by approaching a lead vehicle and in case the lead vehicle
disappears, e.g. by sudden acceleration or lane change, the
ACC switches back to the speed control, which will control
the ego vehicle to again adhere to the user-defined desired
velocity.

The ACC is clearly safety-critical, as a failure of this com-
ponent or sub-components could lead to an unsafe control
behavior, possibly causing material damage and/or physical
injuries if the system fails to brake safely. The key function
of the ACC is maintaining a safe distance to the lead vehicles.
Within our setup, the speed of the vehicle is controlled to
ensure this proper vehicle-to-vehicle distance. This is imple-
mented within an advanced control algorithm and monitored
by a safety function (SF) to ensure this safe distance.

The non-safety critical and safety critical parts of the appli-
cation are decoupled as much as possible within the applica-
tion architecture. This enables a high degree of independence,
both in the development and the V&V process stage of both
parts of the application. The non-safe part is a model predic-
tive control (MPC) algorithm enabling the ACC functionality,
inspired by a Mathworks® example1. The MPC is a form
of control in which the current control action is obtained by
solving, at each sampling instant, a finite horizon open-loop
optimal control problem using a physics-based model [12].
The conceptual architecture of the model-predictive ACC
controller is shown in Figure 3.

Within this control algorithm the physical behavior of the
car is modeled within the model-of-the-physics, which is used
within the optimizer to optimize the acceleration/deceleration
of the ego vehicle. In this use case, the correct behavior of
the system, namely controlling the spacial distance between
the ego vehicle and the lead vehicle, heavily depends on the
correct predictions of the physical behavior of the vehicle
under control. There exists two challenges: (i) the model-
of-the-physics needs to match the interface of the control
algorithm, meaning that the model interface needs to match
with the optimizer algorithm and (ii) the modeled physical
1https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-
using-model-predictive-controller.html

Figure 3: Conceptual architecture of MPC

behavior within the model-of-the-physics need to match as
close as possible with the real behavior of the car under
control. It is therefore key to reason about (i) the model
interface for correct integration and (ii) the model fidelity
of the model-of-the-physics to ensure “correct” (and safe)
behavior predictions.

The safe part of the application is the functional safety
mechanisms, ensuring safe behavior of the ACC. The follow-
ing safety function is in scope of this work, as it include both
traditional safety mechanisms using fixed safety bounds, and
safety mechanisms using models-of-the-physics possibly using
dynamic safety bounds:

∙ SF3 - Safe Distance: This safety mechanism ensures
that the safe distance, either fixed or dynamically cal-
culated, is never violated by the ego car. This ensures
the safety of both the lead and ego vehicle.

Under normal conditions, the optimizer predicts the brak-
ing distance of the ego car using a model-of-the-physics of
the physical behavior of the vehicle and the thermodynamics
of the brakes. This allows the safe distance safety bounds to
be dynamically adapted depending on the available brake
momentum of the ego vehicle. Under faulty conditions how-
ever, a fall-back mechanism is activated and a fixed safe
distance is determined. Therefore, accurate predictions of the
physical behavior of the system is crucial to ensure safe ACC
functionality. This includes explicit reasoning about how well
some properties of the system are predicted by the model-of-
the-physics, such as disc brake temperature or brake slip. As
discussed in Section 4.2.3, validity frames (VF) contain the
information and processes required to ensure that models are
used within a context wherein they reflect reality, as well as
a measure of this fidelity.

3 LITERATURE REVIEW
There exists some confusion in the related literature about
the meaning of the terms “verification” and “validation”.
Within this work, we stick to the traditional definition [2, 8],
such that verification aims to prove that the implementation
fulfills its specifications and validation aims at increasing
confidence in the correct operation of an implementation. As
the complexity of CPSs has increased, so has the complexity of
the corresponding V&V processes, which has been addressed
in the literature in various ways. This ranges from research
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on the overall V&V processes [22] to investigating new V&V
methods and techniques [19] to optimize individual activities.

In earlier work [24], we facilitated the model-based V&V
process of safety-critical systems by enriching the knowledge
about system components with V&V information. Specifically,
components implement artifacts which are inputs to V&V
activities. Process rules are then used to (semi-)automatically
generate V&V processes. In this work, we utilize the same
technique on the information captured in validity frames,
as discussed in Section 4. In addition, this work focuses
on obtaining proof of correct and deterministic component
behavior under both normal and faulty conditions, which is
as important as or even more important than the component
implementation itself.

The frames concept is not a novelty but has been around
since the early 1980’s when Zeigler [26] defined the origi-
nal “experimental frames” idea. These experimental frames
(EF) helped documenting the meta-information necessary to
execute the model itself. Traore and Mazy [21] formalized
this EF concept and Schmidt et al. [20] showed the use of
EFs within the model-based testing of simulation models.
Denil et al. [5] observed that a model’s frame depends on
the activity that is performed and describes why different
activities require different frames. They proposed the VF
concept which defines the experimental context of a model
in which that model gives predictable results.

In previous work [23], we made this VF concept tangible
and showed a basic use case within the development of CPSs.
In particular, we use VFs to capture the range of validity for
models-of-the-physics for a CPS, which assists with model re-
use and creating reduced-order models with sufficient fidelity.
The current work extends the use of the VF concept by
introducing it in the V&V process for both reasoning about
the overall V&V processes and optimizing individual V&V
activity methods. Authors in [6, 13] used knowledge about
the system under test (SUT) to prune the search space and
reduce testing effort.

4 VALIDITY FRAMES CONCEPT
This section will introduce the VF concept, its objective,
scope, and structure with focus on V&V activities.

4.1 Validity Frame Objective and Scope
Extending the work of [5], we formalized the VF concept [23]
to define the range-of-validity of a component. More specifi-
cally, a VF is used to (i) capture the range-of-validity of a
model and (ii) provide methods/processes to assure that a
model faithfully represents the source system. This way, the
VF is not only be used to reason about the range-of-validity
of a model, but can also be used to reason about the use of
a model in a new or altered context, not captured within
the VF. The latter is enabled by the enclosed processes of
the VF, enabling model validation. This increases the model
re-useability by enabling exploration of model usage within
different known or unknown contexts.

A concrete example of the usage of VFs is found in our ear-
lier work [25]. In that work, the range-of-validity for models
of electrical resistors is captured, to define the temperature
and voltage ranges where Ohm’s law sufficiently represents
the real-world behaviour of a resistor. This information is
then used in design-space exploration (DSE), where it can
be detected that the simple Ohm’s law resistor model is used
outside of its validity range and should be replaced by a more
detailed resistor model.

The focus of the VF concept for the present work is on
reasoning and performing (i) correct simulation experiments
with the comprising models and (ii) correct deployment of
the comprising models. That is, ensuring that a model is used
within the context in which it (sufficiently) matches reality. If
a model is simulated within or deployed to a context where it
is not valid, then it is useless (or dangerously inaccurate and
unsafe). We therefore capture the range-of-validity of a model
in a corresponding VF package in which all relevant validity
knowledge of that model is packed together in a structured
way. This implementation detail is beneficial in the domain
of deployment for CPSs, but may be altered to generalize
the VF concept to other domains.

4.2 Validity Frame Structure
A VF is conceptually divided in three main parts2:

∙ Meta-data: Meta-information usable as input for DSE
algorithms
– Model structure
– Execution environment configuration
– Model fidelity
– V&V evidence

∙ Operational: Model scope and usage context
– Equivalence classes

∙ Process: Processes to perform experiments, calibrate
models and assess the model validity
– Main experiment building blocks

Each of the above mentioned information will be discussed
in detail in next subsections and the use will be demonstrated
in Section 5.2.

4.2.1 Meta-data. The subsequent subsections describe the
essential meta-data captured within the VF of a component,
which are used within the V&V stage of the design process.

Model Structure. The first part of the VF concept is cap-
turing the meta-information on the structure of the models,
meaning the components and their (inter-) relationship. These
structure variables are divided into three groups:

∙ Ports: Entities representing the interface definition of
the model

∙ State variables: Entities representing the partial state
of the model

∙ Calibration parameters: Entities representing the cali-
bratable elements of the model

2We omit here a meta-model representation of the validity frame
concept for space reasons. It can be found in our earlier work [23].
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For each of these structure variables, the most essential in-
formation is captured e.g. parameter-based valid boundaries,
datatype, unit, etc. Range information can either be provided
by the user based on his/her experience or can be extracted
from experiment results. The user can also add value’s dis-
tribution to each port. Below, the partial description of the
DistanceSignal output port is shown. It shows that the out-
put signal on this port is guaranteed to be in range of 0 to
100 m, with double as the datatype.

<Port Name="DistanceSignal" RangeMax="100.0" RangeMin="
0.0" Type="Out" Unit="m" Datatype="double" />

Execution Environment Configuration. The next part of
the VF concept is the meta-information captured for the ex-
ecution environment, which is the environment in which the
model is used. Within the current scope of the VF concept,
a VF can contain both models with the intent of simulation
and the intent of embedded deployment, e.g. use within embed-
ded controller. We therefore explicitly capture meta-data on
the execution environment depending on the purpose of the
model. Depending on the execution environment, different
aspects will have influence on the validity of the model. More
specifically, reasoning about the (numerical) accuracy of the
model requires the capturing of essential meta-information
of the simulation environment:

∙ Solver type: Continuous- or discrete-time solver
∙ Solver method: Identification of the solver method e.g.

Dormand-Prince, Runge-Kutta
∙ Step-size: The sampling time at which a model is up-

dated. This step-size, either fixed or adaptive, will have
great influence on the correctness of the simulation and
the stability properties

As well, essential meta-information of the embedded envi-
ronment is captured:

∙ Processor clock: The maximum clock frequency
∙ Memory: The maximum available memory

For the embedded execution environment, meta-data on
the embedded platform is captured as well as on the methods
and techniques used to transform the simulation model into
a deployable model e.g. compiler and optimization flags. Be-
low, the partial description of the compiler used to compile
the model for the NXP MPC 5744p safety-critical embed-
ded platform is shown. This can be used for HiL setup and
simulation.

<Compiler Name="Freescale C/C++ Compiler" Executable="
gcc" Options="-C99 --stdl --no_exceptions" />

Model Fidelity. The next crucial part of the VF concept is
model fidelity meta-data, which provides a metric of how well
a model emulates its source system counterpart. A model val-
idation process needs to be performed as in Section 4.2.3, re-
sulting in one or more metric results specifying model fidelity.
Note this fidelity metric heavily depends on the execution
environment of the models, either simulation or embedded,

as (i) a continuous time system cannot be simulated on a dig-
ital computer without proper numerical integration methods,
which approximates the continuous behavior [26], and (ii)
a continuous time system cannot be executed on a clocked
processor without discretization of the model’s continuous
behavior. Therefore we need to capture not only the fidelity
metric in isolation, but also its dependencies with the model
structure and execution environment. Below, the partial de-
scription of the model fidelity of the model-of-the-physics
used in the MPC algorithm is shown. It shows that we use two
metrics to specify the model fidelity. The Root Mean Square
error and the Cross-correlation is the result of comparing the
results of a real-world experiment using the source system
against the results of a representative virtual experiment on
the model under investigation.

<AccuracyMetrics>
<Metric Name="RMSE" Value="0.55" Port="Velocity" />
<Metric Name="XCOR" Value="39" Port="Velocity"/>

</AccuracyMetrics>

Verification and Validation. The next meta-information
stored in the VF is the evidence of the conducted/performed
V&V activities. Earlier work [24] explicitly captured knowl-
edge about the level of V&V activity completion for each
component within the artifact-view of a component, as a
precursor concept of the VF concept where we now explicitly
capture V&V activity information.

4.2.2 Operational. Within the V&V part of the VF concept,
we also allow defining equivalence classes (EQ). Engineers can
partition their input boundaries to identify different classes
within the input boundaries that give a similar/common
output behavior of the model or partition based on different
modes of the system. Below, the partial description of the
EQs of the safety mechanism SF3 (from Section 2) are shown.
The behavior of SF3 can be divided into two main groups
(based on the two ACC modes): EQ1 where the distance to
the lead vehicle is small (0-25 meters), and EQ2 where the
distance is large (26-100 meters).

<EquivalenceClassCfgDescription>
<EQDescription Name="Q1" RangeMin="0" RangeMax="25"/>
<EQDescription Name="Q2" RangeMin="26" RangeMax="100"/>

</EquivalenceClassCfgDescription>

4.2.3 Processes. Another key part of the VF concept is the
contained methods/processes which enable (i) the correct
use of the model within its correct context, (ii) assessment
of the model fidelity, and (iii) custom-fit the model for a
specific intent/purpose via model calibration. These processes
are crucial within the V&V stage where the implemented
behavior of the system under design needs to be verified
and validated against the expected behavior. Within the VF
concept, two main processes are included:

∙ Back-to-back (B2B) process: The validation process to
assess how well a model emulates its source system,
taking the model purpose into account. Essentially, the
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purpose of the model is translated into a real-world
experiment, conduced on the source system and to a
representative virtual experiment, performed on the
model under study. The resulting information of both
experiments are used as input for the function(s) to
determine the model fidelity.

∙ Calibration process: The process of custom-fitting mod-
els by altering the calibration parameters. Essentially,
after calibrating the model, the B2B process is used to
validate the calibrated model.

The main building blocks of these two processes can be
re-used to conduct experimental V&V activities:

∙ Test-case design: The definition of the experiment’s test-
cases or experimental traces, based on the experiment
objectives, provided as input to the (virtual) system.
The model structure, equivalence classes and previously
conducted virtual experiments are the key inputs to
semi-automatically generate valid test-cases.

∙ Execution environment setup: The definition of the ex-
perimental harness used to perform correct experiments
on the (virtual) system together with the specification
of the execution environment capable of executing the
(virtual) system to generate its behavior. For the ex-
perimental harness, an integration model is generated
which connects the stimuli and assessment elements to
the component-under-experiment. The key inputs that
enable this are the model structure and the execution
environment configuration.

∙ Experiment execution: The process of conducting the
defined experiment or experiment suite. This gives the
experimental results used for further assessment.

∙ Experiment assessment: The assessment process for ob-
serving and analyzing the virtual system output to
observe if the experimental conditions are met. Key
inputs to generate these assessment functions are the
model structure, system requirement and the experi-
ment objectives. Note that typically a tolerance bound
is defined on the expected behavior. This tolerance
bound can be explicitly defined within the VF or can
be derived from system specifications.

By using the meta-data available within the VFs of models,
almost the complete experiment process from test-case design
to experiment assessement at unit level can be (semi-) auto-
mated. Besides the use at unit level, the VF data can also
ease the V&V activities at integration level, e.g by providing
automated interface checks3 of interconnected components.
This can largely reduce the effort and cost to conduct ex-
perimental V&V activities. This is demonstrated in Section
5 by conducting different V&V methods on the running ex-
ample of Section 2. Note that the Experimental Frame (EF)
of Zeigler [26] is also defined as the conditions under which
a system is observed or experimented with. The test-case
design process resembles the generator of Zeigler, while the

3Checking the interface compatibility in terms of matching units,
datatypes and boundary ranges

Figure 4: Auto-generated model-based V&V test process

experiment assessment resembles the merge of the transducer
and acceptor parts.

5 VALIDITY FRAMES SUPPORTING
VERIFICATION AND VALIDATION

This work aims to ease the V&V activities involved within
a model-based design process by using the data explicitly
captured within the VF concept of the comprising system
components. Parts of the running example of Section 2 will
be used in this section to demonstrate this efficiency gain.
The following assumptions are made:

∙ Assumption 1: The system components were all devel-
oped and tested until a particular test level, depending
on the use in previous use cases.

∙ Assumption 2: For each of the system components, a
VF is defined comprising all essential information as
discussed in Section 4.

5.1 Generation of Verification and Validation
Processes

The first use of the captured V&V data for the different
system components is using the V&V activity completion
knowledge. In [24], we demonstrated that using this data,
the model-based V&V process of the complete system is
facilitated by (semi-) automatically generating valid and
optimized V&V strategy processes. To enable the (semi-)
automatic generation of valid V&V processes, we need a model
of the software architecture, which defines the components
and their interconnections, together with a set of rules or
constraints that constrain the valid control flow of the model-
based V&V activities.

The following rules are defined for the running example:
∙ V&V activities on the software level need to be per-

formed sequentially after the V&V activities on the
model level.

∙ All V&V activities on the integration level need to be
performed sequentially after all V&V activities on the
unit level of the comprising system components.
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To generate the shown V&V strategy process in Figure
4, all components of the explicit modeled software architec-
ture (namely Controller, SF3_SafeDistance and the Out-
putHandler) and their corresponding level of V&V activity
completion are interpreted. Using the X-in-the-Loop (XiL)
test strategy (MiL, SiL, PiL, HiL), the V&V activities that
still need to be performed can be determined for each of the
components and the overall integration (XiL_IT). The result-
ing set of V&V activities are used as input for the generation
of a valid V&V strategy process. Using the process rules, not
only the execution order of the V&V activities are specified,
they also specify if a V&V activity can be excluded from
the V&V strategy process, resulting in an optimized V&V
process. This generated V&V strategy process can reduce test
effort by (i) optimizing the V&V strategy to both the soft-
ware architecture and any engineer-specific strategy and (ii)
narrowing the experiment-space by eliminating unnecessary
or duplicate V&V activities. The latter is particularly effort-
cutting if the application architecture comprises re-usable
(safety) system components, which are already verified and
validated at a particular integration level.

5.2 Verification and Validation Software Testing
Once the VF meta-data for a complex system component is
defined, this enhanced knowledge can be used to ease sub-
sequent parts of the design process, such as the verification
step. As mentioned in Section 1, the verification activities
need to occur at different levels of abstraction, and all sub-
sequently discussed V&V activities can be carried out at
different stages of the model life cycle. Key differences are
(i) the model under test itself and (ii) the execution envi-
ronment setup. The preliminary function evaluation of the
ACC controller is done at the MiL stage, with a complete
virtual experiment environment running on a non-real-time
host. The generated source code from the ACC controller
is verified on the SiL stage, again using the same virtual
experiment environment. Within the PiL stage, the gener-
ated object code of the controller is verified, running in the
dedicated processor, interfacing with a virtual experiment
environment running on a non-real-time host. Within the HiL
stage, the embedded controller and the physical connections
are verified by interfacing with a real-time target, enabling
real-time performance of the virtual elements together with
comprehensive, precise, and fast I/O capabilities. The VF
concept comes into play in different parts in this XiL strategy:
(i) the experimental traces and validity assessment function
implementation, captured in the VFs, can be re-used within
the different stages, (ii) the range-of-validity of the different
representations of the controller, model, source code, and
object code can be used for automating test-case design, (iii)
the captured meta-data on the execution environment config-
uration can be used to automate the execution environment
setup, and (iv) the captured meta-data on the specification
of the transformations between the model representations
can be used to automatically perform this transformation.
That is, the object code can be generated from the source

code using the compiler and linker specifications. Without
the use of the VFs concept, this knowledge about the different
representations, their range-of-validity, the execution environ-
ment setup and the transformation specifications would all
be scattered implicit knowledge and manual actions would
be required to use this info within the V&V activities.

5.2.1 Requirements-based testing. Requirements-based test-
ing is the process of testing if a component fulfills the func-
tional and non-functional requirements as defined in an of-
ficial requirements document. The key value of VFs here is
the re-use of conducted experiments and the automated ex-
periment setup throughout the XiL process. The VF concept
allows the capturing of each conducted experiment, both the
experimental traces and the assessment function, within the
process part of the component’s VF. This automated re-use
of requirements-based experiments can reduce the test-effort
tremendously, as will be explored in future work.

(i) Experimental traces or stimuli

(ii) Observed output behavior

Figure 5: Evidence requirement-based test SF3

Figure 5 (i) shows a requirements-based experiment, (ii)
shows the output traces, together with the identification
of the expected behavior. This expected behavior can be
explicitly defined within the assessment functions or can
be retrieved by conducting the same experiment on higher
fidelity models. As such, the retrieved expected behavior,
together with some tolerance bound, can be used to assess
whether or not the requirements-based experiment is passed.

The experimental setup links the experiment traces or
stimuli to the SUT and verifies the SUT’s behavior, and it
is automatically generated along with the execution environ-
ment configuration. Figure 6 shows the experimental setup of
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Figure 6: Auto-generated and configured experimental setup

the requirements-based experiment. As this is a MiL experi-
ment, the configuration of the execution environment can be
achieved by configuring the solver using the corresponding
VF meta-data.

5.2.2 Random-input testing. Random-input testing method-
ology is the process of testing a component by selecting at
random some subset of all possible input values. It is one of
the least effective methodologies but can reveal some unex-
pected component errors [18]. The value of VFs is the use of
the meta-data of the model structure to automate the test-
case generation, where the assumed ranges and equivalent
classes on the model inputs are used as input for the test-case
generation. Again, the experimental setup and the execution
environment configuration is automated.

(i) Experimental traces or stimuli

(ii) Observed output behavior

Figure 7: Evidence random-input test SF3
Figure 7 (i) shows the generated random signal values for

each of the component inputs, (ii) shows the output traces,
together with the identification of the expected behavior.

This expected behavior is the guaranteed range for each of
the component outputs which are captured in the model
structure of the VF. Figure 7 (ii) clearly shows that the
observed behavior of the SUT is not valid at 80, 490 and 520
ms, indicated by the red boxes, as the guaranteed output
boundaries are violated. A validity violation can also be
used as termination condition, meaning that a violation can
terminate the experiment suite before completion.

5.2.3 Boundary-value testing. Boundary-value testing (or in-
terface testing) is the process of testing the boundaries of
the components behavior by selecting test points on and
near the input boundaries. This method proves to be very
effective as it is frequently observed that domain boundaries
are particularly fault-prone [9]. The added value of VFs is
again the use of the assumed ranges on the model inputs, cap-
tured within the model structure of the VF, to automate the
test-case generation, the experimental setup and execution
environment configuration.

(i) Experimental traces or stimuli

(ii) Observed output behavior

Figure 8: Evidence boundary-value test SF3

Figure 8 (i) shows the generated test points for the boundary-
value test of input 1, (ii) shows the output traces, together
with the identification of the expected behavior. This ex-
pected behavior can, as discussed before, be an explicit ex-
periment trace or the result of the B2B process.

5.2.4 Fault-injection testing. The last V&V method in scope
of this work is fault-injection testing. Fault-injection (FI)
testing is the process of deliberately introducing faults in a
component to analyze its behavior and response in faulty
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conditions [4]. Fault-injection testing is typically performed
within the V&V process of safety-critical applications where
it is critical that system engineers not only prove that the
component fulfills its functions, but that it can also gracefully
handle hidden residual faults. The key value of VFs is the use
of (i) equivalent classes and (ii) the meta-data of the model
structure to automate the test-case generation and prune
fault-space. More specifically, the VF data is not only used
to automate the experiment setup and configuration of the
execution environment, but also to automatically instrument
the experimental setup with faults. This is performed by
adding a custom fault-injection annotation block as seen in
Figure 9. This annotation block was developed in previous
work on model-implemented hybrid fault-injection [16], and
is added at each position in the SUT where a fault needs
to be injected. Depending on the VF data, this custom FI
annotation block is configured to trigger corresponding fault
patterns such as stuck-to-zero faults.

Figure 9: Custom fault-injection annotation block

As this model structure contains not only meta-data on
the in- and outputs of the model but also on the parameters
and/or state variables, this enables the injection of fault
signals not only at the inputs of the model, but also in the
model internals such as parameters and state variables. Also,
boundary ranges of inputs and equivalent classes are used to
set proper fault parameters and test cases [14, 15]. In this way,
more test cases can automatically be generated, which results
in a more efficient test strategy, increasing the confidence
and reliability in the correctness of the component.

Figure 10 (i) shows the generated test points for the fault-
injection test, while (ii) shows the output traces, together with
the identification of the expected behavior. This expected
behavior can, as discussed before, be an explicit experiment
trace or the result of the B2B process. The expected behavior
of the component-under-test shows that the component im-
plementation contains a fault-handling mechanism, observed
by the changing output trace at the FI time. Note that for
each FI experiment, the fault representativeness [1] of the
simulation-based fault experiment needs to be assessed. That
is, checking the plausibility that a physical fault, e.g. short
to ground, is represented in a correct way via the virtual
experiment.

(i) Experimental traces or stimuli

(ii) Observed output behavior

Figure 10: Evidence fault-injection test car dynamics

6 DISCUSSION
Benefits. By using the enhanced model knowledge captured

within the corresponding VFs, the V&V process can be made
more efficient by customized and optimized the process and
automating it partially. This decreases the V&V process
effort drastically. By again capturing the V&V knowledge,
gathered during an ongoing V&V process, and extending the
corresponding VFs, the (re-)usability of these models can
further be extended. This can potentially decrease the V&V
process effort of new projects even further e.g. by re-use of
defined test scenarios or automatically skipping tests at a
particular test phase.

Limitations. There are some limitations associated with
our approach. The first limitation is that the effort reduction
within the V&V part of the design process is the result of
an increased effort within the design/development part of
this process, so the net benefits of using the proposed VF
concept in V&V processes will become most apparent as the
re-use of components increases. Second, the test automation
using the VF data assumes that the XiL validation tool chain
is well-known and fixed. Lastly, the quality and usability of
the conducted tests heavily depend on the correctness and
completeness of the captured VF data. Faulty or incomplete
VF data will result in nonsensical or failed tests.
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7 CONCLUSIONS AND FUTURE WORK
In this work, we presented the use of the Validity Frame
(VF) concept to support the V&V activities for complex
cyber-physical systems. We first identified what meta-data
is essential for facilitating (parts of) the V&V process and
showed how this is captured within a structured way in
the VF. Using an academic safety-critical cyber-physical
system, which comprises multiple models-of-the-physics, we
demonstrated the use of this meta-data to (i) automate the
generation of a valid V&V process, (ii) automate the setup
and execution of some of the V&V activities, (iii) front-load
V&V activities at earlier design phase, and finally (iiii) lower
the time and cost of the testing process.

Within this work, we have ignored the existing relation
between the conducted V&V experiments and the (set of)
properties-of-interest that is/are validated or verified using
the experiments. In the future, we plan to make this relation
between the experiments and the properties-of-interest ex-
plicit and capture it within the VF. We also plan to formally
specify the VF concept and broaden their use within state-
of-the-art engineering processes, focusing on model-based
design.
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