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Abstract

Model transformations play an essential role in the Model-Driven Engineering paradigm. However,
writing a correct transformation requires the user to understand both what the transformation should
do, and how to enact that change in the transformation. This easily leads to syntactic and semantic
errors in transformations which are time-consuming to locate and fix. In this article, we extend our
evolutionary algorithm (EA) approach to automatically repair transformations containing multiple
semantic errors. To prevent the fitness plateaus and the single fitness peak limitations from our
previous work, we include the notion of social diversity as an objective for our EA to promote repair
patches tackling errors that are less covered by the other patches of the population. We evaluate
our approach on four ATL transformations, which have been mutated to contain up to five semantic
errors simultaneously. Our evaluation shows that integrating social diversity when searching for repair
patches improves the quality of those patches and speeds up the convergence even when up to five
semantic errors are involved.

Keywords: model-driven engineering, model transformations, ATL, evolutionary algorithms, social diversity,
transformation repair, repair patches, search-based

1 Introduction

Model-driven engineering (MDE) is an efficient
approach to reduce the complexity of software
development by increasing the level of abstrac-
tion [28]. In this context, MDE sees models as

first-class artifacts where domain-specific mod-
eling languages capture specific aspects of the
solution.

Model transformations then play an essential
role in MDE, as they specify how to transform
elements of a model conforming to a source meta-
model into elements of a model conforming to a
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target meta-model. They can also be used to pro-
duce from these models low-level artifacts such as
source code, documentation, and test suites [39],
or to optimize or simulate the model itself [26].

Model transformations can be written with
either general-purpose programming languages or
in dedicated transformation languages such as
DSLTrans [4] or the ATLAS Transformation Lan-
guage (ATL) [21].

Errors in Model Transformations

Writing a correct model transformation requires
the developer to be proficient with the source and
target meta-models, to have a clear understand-
ing of the mapping between the elements of the
two and to know how to exploit the transfor-
mation mechanisms of the language to properly
describe this transformation. Transformations are
thus complex and error-prone, and finding and fix-
ing errors in them typically involve a tedious and
time-consuming effort by developers [44].

Several types of errors can affect a trans-
formation. Syntactic errors usually prevent the
transformation from compiling and producing an
output model. To alleviate the developers’ effort
when fixing syntactic errors, works such as the one
of Cuadrado et al. [12] propose predefined correc-
tive patches to be applied on errors detected with
syntactic analysis tools (e.g., AnATLyzer [11] for
the ATL language).

In contrast, when the transformation com-
piles but the implemented behavior is not the
one that was intended by the developers, we
say that it contains semantic errors. As a con-
sequence, semantically incorrect transformations
can produce output models, but these models are
different from the ones that the user expects.
Because semantic errors pertain to the transfor-
mation’s behavior and each faulty transformation
needs tailored patches, predefined patches are not
well-suited for semantic errors.

Correcting Errors with Evolutionary
Algorithms

Population-based evolutionary algorithms (EAs)
have been widely used to correct errors in pro-
grams [29], as well as both syntactic [48] and
semantic [47] errors in transformations. Formu-
lating transformation repair as an optimization
problem enables such search-based approaches to

find patches that will fix a given faulty transforma-
tion in a space of possible patches. EAs maintain
a population of candidate patches which undergo
a process of evolution across several generations
until an optimal patch is found. At each genera-
tion, the evolution process creates new solutions
based on the population of the previous genera-
tion, and the best candidates are retained for the
next, hopefully better, generation.

Finding suitable patches with this approach is
a fully automated process, at the end of which, the
best fitting patches can be presented to the expert
to make a final decision about the repair to be
applied. To fix errors related to a transformation’s
behavior, automated approaches usually rely on a
specification of the expected behavior (e.g., test
cases or examples) to assess the fitness of a patch,
and thus efficiently guide the search strategy.

In our previous work [47], we used EAs with
test cases to correct semantic errors in ATL trans-
formations. This approach usually finds patches
to correct transformations having fewer errors,
but in the presence of more errors, the approach
cannot find a solution or will take too long to con-
verge toward suitable patches. Preliminary anal-
ysis showed that using test cases to assess the
fitness of the corrective patches makes the search
space difficult to explore efficiently due to fitness
plateaus [41], an issue of EAs which impedes the
ability of the approach to converge toward opti-
mal patches. In addition, EAs are known to give
more power to good solutions, which can cause
converging issues due to loss of diversity, a prob-
lem known as single fitness peak. Using behavior
specifications such as test cases to guide the search
in EAs can exacerbate these limitations [5, 41].

Contributions and Structure

In this paper, we extend our EA-based approach
from [47] to automatically find patches to correct
transformation with a greater number of seman-
tic errors. In particular, to improve the efficiency
and effectiveness of EAs using test cases, our
improved approach leverages the notion of social
diversity [5]. This metric promotes patches which
tackle errors that are less covered by the other
patches of the population. Our hypothesis is that
including this measure in the process will maintain
or improve the diversity of the patches, thereby
reducing the negative impact on convergence of
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single fitness peak and fitness plateaus. To include
this notion in EAs, we formulate the transforma-
tion repair as a multi-objective optimization prob-
lem [37], where solutions must optimize several
objectives including social diversity. Our approach
is implemented using the NSGA-II algorithm, a
fast multi-objective EA [13].

We perform an evaluation on four ATL trans-
formations which have been mutated, assessing
the impact of social diversity on the convergence
of EA-based repair. We reuse the two faulty
transformations from our previous work and also
consider two new transformations taken from the
ATL zoo1 to thoroughly evaluate the impact of
our approach on transformations having several
errors. The evaluation shows that social diversity
is able to improve both the efficiency and the effi-
cacy of EAs to fix faulty transformations, even
when they contain up to five semantic errors.

In Section 2, we describe ATL transforma-
tions, provide examples of defects and of patches
repairing such defects. Section 3 presents our pre-
vious approach [47] relying on EAs to find patches
repairing semantic errors in transformations. We
show the formalization of patch generation as an
optimization problem and how we adapted multi-
objective EAs to find patches meeting several
objectives. Then, Section 4 presents an analysis
of the limits of the previous approach and why
we believe that introducing diversity would help
mitigate these issues. We present an updated ver-
sion of our approach from [47], now including a
social diversity measure in the process. Our new
approach is evaluated in Section 5 to determine
the impact of introducing social diversity in EAs
on improving convergence and repairing a greater
number of errors. The benefits, limitations, and
threats to our approach are discussed in Section 6.
Section 7 presents related work and Section 8
concludes the paper.

2 Background

In this section, we first provide background about
model-to-model transformations. We focus on
transformations written in the well-known ATLAS
Transformation Language (ATL) [21], but the
approach presented in this paper is generic and
can be adapted to other transformation languages.

1https://www.eclipse.org/atl/atlTransformations/

We then present the types of errors that can be
found in such transformations, including seman-
tic errors, which are the target of this work.
We demonstrate patches to repair faulty trans-
formations and discuss why their generation is
challenging. Finally, we present a formalization of
the problem.

2.1 ATL Transformations

Model transformations are an approach for speci-
fying and automating the process of transforming
a source model into a target model. A transfor-
mation relies on meta-models describing both the
source and the target models: these meta-models
can be the same (endogeneous transformations)
or they can be different (exogeneous transforma-
tions). Thus, a given transformation is defined for
a pair of meta-models, and can only transform
source models conforming to the input meta-
model into a target model conforming to the
output meta-model.

ATL [21] is a well-known textual transfor-
mation language which is studied in the MDE
literature [11, 12, 20, 33]. Examples of ATL trans-
formations can be found in the ATL zoo, a
repository which also includes the necessary meta-
models along with documentation. We present
ATL by examining an example inspired from the
Class2Relational2 transformation of the ATL zoo.
The Class2Relational transformation transforms
an UML class diagram into its equivalent rela-
tional schema. Figure 1 shows simplified versions
of the UML Class Diagram meta-model and the
Relational Schema meta-model.

Listing 1 presents a simplified excerpt of the
Class2Relational ATL transformation. This trans-
formation is the correct version in which erroneous
code (which we will discuss in the next section)
appears in the commented lines (lines 7, 8, and
32, starting with ‘−−’). The two meta-models
are identified on line 1: the source meta-model
is Class (IN) and the target meta-model is Rela-
tional (OUT). Rules are introduced by the keyword
rule (lines 3, 15, and 22) and have a name (for
instance, Class2Table in line 3). Each rule has two
parts: a from part defines a pattern of elements

2https://www.eclipse.org/atl/atlTransformations/
#Class2Relational
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Fig. 1 Excerpt of a UML Class Diagram meta-model
(top) and Relational Schema meta-model (bottom)

from the source meta-model, and a to part defin-
ing how to transform elements of the from part
into elements of the target meta-model. Patterns
can represent types: for instance on line 4, the rule
Class2Table applies to each element conforming to
the type Class. They can also be refined with con-
straints, here defined with the OCL language: for
instance, lines 16-18 states that the rule Single-
ValuedDataTypeAttribute2Column applies on ele-
ments conforming to the type Attribute, having an
attribute type representing a native type, and an
attribute multiValued being false.

The to part describes how to create elements
of the target model based on the elements of the
source model matching the associated from part.
The to part may create one element (e.g., in lines
19-20, a Column is created when an Attribute is
matched) or several ones (e.g., in line 5 and line
12, both a Table and a Column are created when
a Class is matched). For each created element,
one can define bindings to associate values to the
attributes of the created element. Bindings can
use values of the source model elements matched
in the from part to initialize the target model
elements. For instance, in line 6, the attribute
name of Table is initialized using the name of the
matched Class (i.e., c.name). Bindings can define
collections (e.g., a Sequence in line 9, a Set in line
11 and may use iterator or operation calls in ini-
tialization (e.g., firstToLower() in line 30). When a
binding references elements from the source model

to initialize an element of the target model, the
source model elements must undergo a transfor-
mation into elements compatible with the target
model. In such cases, a binding resolution mech-
anism comes into play, tasked with identifying a
rule capable of executing this transformation. This
involves finding a rule with a from part corre-
sponding to the type of the source model element
and a to part corresponding to the type of the
target model element.

Listing 1 Excerpt of a repaired ATL transformation
from Class Diagram to Relational Schema. Commented
lines present defects fixed by the patch in Figure 4.

1 create OUT : Relational from IN : Class;
2
3 rule Class2Table {
4 from c: Class!Class
5 to out: Relational!Table (
6 name <- c.name ,
7 -- col <- Sequence {key} -> excluding(
8 -- c.attr -> collect(e | not e.

multivalued)),
9 col <- Sequence {key} -> union(
10 c.attr -> select(e | not e.

multivalued)),
11 key <- Set {key}),
12 key: Relational!Column (
13 name <- "objId")}
14
15 rule SingleValuedDataTypeAttribute2Column {
16 from a: Class!Attribute (
17 a.type.oclIsKindOf(Class!DataType)
18 and not a.multivalued)
19 to out: Relational!Column (
20 name <- a.name)}
21
22 rule MultiValuedClassAttribute2Column {
23 from a: Class!Attribute (
24 a.type.oclIsKindOf(Class!Class)
25 and a.multivalued)
26 to out: Relational!Table (
27 name <- a.owner.name + "_" + a.name ,
28 col <- Sequence {id , foreignKey }),
29 id: Relational!Column (
30 name <- a.owner.name.firstToLower () + "

Id"),
31 foreignKey: Relational!Column (
32 -- name <- a.type + "Id")}
33 name <- a.name + "Id")}

Figure 2 shows an example of the target model
(bottom) conforming to the Relational meta-
model obtained when running the transformation
of Listing 1 on a source model (top) conforming
to the class diagram meta-model.

2.2 Defects in Transformations

Transformations thus highly depend on the ele-
ments of the two meta-models. Syntactic errors
can be due to type misuse such as referring to ele-
ments that are not in the meta-models or setting
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TRANSFORMATION PROGRAM

Fig. 2 Relational Schema (output model, bottom)
obtained when applying the transformation of Listing 1 to
the class diagram (input model, top)

properties with values of the wrong type. Syntac-
tic errors usually hinder the proper compilation
and execution of the transformation. Tools such
as AnATLyzer [11], a static analyzer for the ATL
language, can be used to check syntactic errors.

Semantic errors make a transformation behave
in a way that differs from what is expected, i.e.,
the transformation is semantically incorrect with
respect to a specification of the expected behavior.
These errors do not necessarily hinder the com-
pilation and execution processes, but may cause
the transformation to produce the wrong outputs.
A straightforward way to outline the intended
behavior of a transformation is to provide a set
of input-output examples, i.e., test cases defining
input models and their corresponding expected
output models. When provided with the test case
input models, the transformation will produce
some output models. The produced models can
then be checked against the test case output mod-
els to detect behavior deviations. In other words,
if the outputted models are different from those of
the provided examples, it shows that the transfor-
mation is semantically incorrect with regards to
the provided test cases. Figure 2 thus represents a
test case for the transformation of Listing 1 with
an input model (top) and the expected output
model (bottom).

Let us consider the version of the transfor-
mation of Listing 1 using the commented code.
Figure 3 (b) presents the target model we obtain
when applying this version of the transformation
on the input model of Fig. 2. We can see that
it is different from the expected target model

(a) in three different locations, as highlighted by
red dots in Fig. 3 (b). The columns name and
firstName are missing from the tables Family

and Person, respectively. Also, we can see that
the second column of the table Family members

is named PersonId instead of membersId. There-
fore, according to this test case, the version of
Listing 1 using the commented code presents a
faulty transformation containing semantic errors.
Note that the AnATLyzer [11] tool did not detect
any syntactic errors in this erroneous version of
the transformation.

Fig. 3 Differences between the expected output model (a)
and the output model obtained with the transformation of
Listing 1 using the commented code (b)

2.3 Repair Patches

Program repair can be defined by the transforma-
tion of an unacceptable behavior of a program into
an acceptable one according to a specification [29].

We call a patch a sequence of edit operations
which modify a transformation’s source code. A
patch is considered good if it modifies a trans-
formation to conform to a given specification. In
our case, if a patch modifies the transformation so
that the obtained output models are equivalent to
the expected ones, then this patch is considered
optimal to repair the transformation.

Table 1 presents a subset of the atomic edit
operations for ATL transformations proposed by
Cuadrado et al. [12]. This subset corresponds to
the operations modifying elements in the trans-
formation rules, as presented in [47]. We thus
use these edit operations to compose the patches
to repair faulty ATL transformations. We also
employ these edit operations in our evolution-
ary algorithm to mutate proposed patches in
Section 3.1.
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The two operations Binding creation and bind-
ing deletion respectively add a new and remove
an existing binding in a given rule. Type of source
pattern element modifies the from part of a rule,
while Type of target pattern element changes the
to part of a rule. Type of collection modifies collec-
tion data types provided by OCL (e.g., Sequences,
Set, Bag). Type argument of operation changes
the arguments of type-testing operations such
as oclIsKindOf() and oclIsTypeof(). Naviga-
tion expression and Target of binding respectively
change a given binding’s right-hand side and
left-hand side. Finally, the three operations Col-
lection operation call, Iterator operation call and
Predefined operation call change a call by another.

All these operations take parameters to define
on which element of the transformation it should
be applied, as well as the modified values when
applicable. First, they all have a parameter indi-
cating which rule is to be modified. All edit opera-
tions also indicate the modified element, except for
Type of source pattern element which applies on
the unique source pattern element of the rule. The
modified element is one of the to part of the rule,
and some edit operations (e.g., Type argument
of operation) can target elements in the to part
as well. Binding deletion has a parameter whose
value is taken in the list of bindings of the cor-
responding rule and element. All edit operations
which are not creating or deleting bindings modify
a datatype, a feature name or an operation call:
they have thus two additional parameters indicat-
ing the old and the new values. The new values
are bounded by the kind of edit operations. Type
of source and target pattern elements take their
values in the list of types defined in the source and
target meta-models, respectively. Type argument
of operation can take values from types defined
in both meta-models. Type of collection relies on
the collection types defined in OCL. Navigation
expression and Target of binding take a new value
in the attributes of the indicated element. The
last three edit operations modify operation calls,
which depend on the datatype on which the call
is applied, as presented in the ATL documenta-
tion3. For simplicity, we refer to these three edit
operations as Operation call.

Figure 4 shows an example of a patch com-
posed of three edit operations used to correct

3https://eclipse.dev/atl/documentation/

Table 1 Atomic edit operations to modify ATL
transformation programs, taken from [12, 47].

Target Type
Binding Creation
Binding Deletion
Type of source pattern element

Type
modification

Type of target pattern element
Type of collection
Type argument of operation
Navigation expression (binding RHS) Feature name

modificationTarget of binding (binding LHS)
Predefined operation call

Operation
modification

Collection operation call
Iterator operation call

the transformation of Listing 1, i.e., when applied
on the version using the commented code, the
patch modifies it to the non-commented ver-
sion. The first operation replaces the opera-
tion call excluding() by union() in the rule
Class2Table (original: line 7, corrected: line 9).
Similarly, the second operation replaces the oper-
ation call collect() by select() in the same
rule (original: line 8, corrected: line 10). The
third operation changes a binding right-hand side
in the rule MultiValuedClassAttribute2Column: it
replaces a.type by a.name (original: line 32,
corrected: line 33). This patch therefore modi-
fies the faulty transformation behavior, and the
patched transformation produces the expected
output model. This three-edit patch is thus con-
sidered optimal to repair the transformation with
regards to the provided test case.

2.4 Formulating Repair Patches

Designing patches to repair semantic errors is
a difficult endeavor which requires an expertise
in the transformation language, the meta-models
and the transformation itself. Input/output in test
cases may reveal the presence of semantic errors,
but do not provide a clear indication of what is
causing the errors, nor the rules in which they
may occur. Detecting and fixing errors related to
transformations’ behavior is even more difficult
because of the declarative nature of transforma-
tion languages such as ATL. Moreover, gathering
reusable knowledge about model transformation
repair on which we could build automated or semi-
automated approaches to assist experts in this
task is tedious. In fact, transformations are very
dissimilar (notably because most of the transfor-
mation depends on the meta-models) and there
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[edit-1] OperationCall(
rule=Class2Table, object=out, 
old=excluding, new=union)

[edit-3] NavigationExpression(
rule=MultiValuedClassAttribute2Column, 
object=foreignKey, old=a.type, new=a.name)

[edit-2] OperationCall(
rule=Class2Table, object=out, 
old=collect, new=select)

Fig. 4 Example of a patch to repair the transformation of Listing 1 to conform to the behavior defined by the expected
output model of Fig. 3

are few available repositories of them. In such sit-
uations, an alternative is to formulate the task
as an optimization problem, where the goal is to
automatically find optimal solutions in a space of
possible solutions.

Formulating transformation repair as an opti-
mization problem, an optimal solution represents
a patch fixing the errors of the transformation,
and the space of solutions to be explored is thus
equal to the set of possible patches which could
be applied on the faulty transformation. How-
ever, this space cannot be explored exhaustively.
Indeed, each error in a transformation can poten-
tially be repaired by choosing one or many edit
operations, and each edit operation may involve
any possible instance of elements in the input
and output meta-models. Alternative methods are
then necessary to efficiently explore this space.

2.5 Problem Formalization

Our approach requires the definition of a fitness
function (Section 3.1) which calculates how well
a patch fixes errors in the transformation. This
section provides the formal basis to define the
terms in that fitness function.

We begin by representing our transformation
of interest by tr. Associated with this transforma-
tion tr is a test suite, where each test case in that
suite consists of one input model and its corre-
sponding output model (Section 2.2). Equation 1
formalizes this notion of a test suite T .

Ttr = {(in0, out0), (in1, out1), . . . , (inn, outn)}
(1)

We are interested in how a transformation will
transform the input models in a test suite, and
how these produced output models differ from the
reference output models in that test suite. That
is, when we execute the transformation tr on the
input model ini to obtain tr(ini), how does this
differ from the reference output model outi? We
define the function errors in Equation 2 which
collects this set of differences. This will allow for

the measuring of how many and which errors are
fixed by patching a transformation. These dif-
ferences are produced through the diff function,
which is provided by EMFCompare [6] in our
implementation.

errors(Ttr) = {diff(tr(ini), outi) ∈ Ttr} (2)

We define a patch p in Equation 3 which is a
sequence of edit operations as shown in Figure 4.

p = (e0, e1, . . . , en) (3)

We then define a patching function patch(tr, p)
which applies the patch p to the transformation tr
to produce the patched transformation trp.

From these constructs, we can then i) col-
lect the errors in a transformation’s test suite
(Equation 2), and ii) patch a transformation to
attempt to fix it. We will combine i) and ii) in our
approach to repeatedly patch transformations and
determine the fitness of that patch in terms of the
errors fixed.

3 Evolutionary Algorithm
Patch Creation

This section introduces an approach presented
in our previous work [47] which relies on evolu-
tionary algorithms (EAs) to automatically find
repair patches for ATL transformations having
semantic errors. Section 3.1 first presents the
important concepts of EAs (i.e., solution repre-
sentation, genetic operators and fitness function)
and how we adapted them to find patches auto-
matically. A key aspect of our previous approach
was to find patches optimizing two different objec-
tives: Section 3.2 then presents multi-objective
EAs which enable to exploit several fitness func-
tions. We explain the implementation of the two
fitness functions we used to find patches repair-
ing the most errors possible while preventing
them from growing unnecessarily large. Finally,
Section 3.3 combines the presented concepts to
provide an overview of the approach.
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3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are search meth-
ods used to solve a wide range of optimization
problems by efficiently exploring the search space.
Their search strategy is inspired by the evolu-
tionary theory: EAs maintain a population of
candidate solutions which undergo an evolution
process through several generations. At each gen-
eration, some solutions are mutated (i.e., we use
an existing solution to create a slightly different
solution) and other solutions are bred (i.e., several
existing solutions are recombined to create new
solutions).

The newly created solutions along with the
previous solutions are then evaluated and a fit-
ness score is associated to each one of them, which
reflects how good the solution is to solve the
considered problem. The solutions with the best
scores have a higher probability to be retained in
the population and to go through the next gen-
eration, while the others tend to be discarded.
By keeping the best solutions at each generation
and using them to create new solutions, each new
generation should have a population of solutions
better suited to fix the problem than the previous
one, until an optimal solution is finally found.

Population-based evolutionary algorithms
have been studied to find patches to repair
general purpose programs [14, 16] and domain
specific ones such as ATL [47, 48]. Adapting a
problem such as tranformation repair to be solved
with EAs revolves around three points: defining
a solution representation, genetic operators and
a fitness function. In the rest of the section, we
discuss these three points and illustrate them on
the problem of repairing ATL transformations.

3.1.1 Solution Representation

In EAs, solutions are the central artifacts which
are modified, evaluated and retained through gen-
erations. Because this process is fully automated,
choosing a way to represent solutions that ease
their manipulation is essential for the approach
to run smoothly. Early EA-based approaches to
repair programs used to consider a whole program
as a solution: the population included different
versions of the program to be repaired (usually
in the form of ASTs) and evolved these pro-
grams until a correct version was found [49]. This

could be costly in time and memory, and the evo-
lution process was complex because it involved
modifications on the AST.

A more convenient way to represent solutions
in these cases is to consider patches in the form
of sequences of edit operations as represented in
Fig. 4. Sequences are easy to represent and manip-
ulate, especially during the evolution phase, as
discussed hereafter.

In the case of ATL transformation repair, a
population would gather a set of patches being
sequences of variable size of atomic edit opera-
tions, as presented in Section 2.3.

3.1.2 Genetic operators

Genetic operators are at the core of the pro-
cess of evolving solutions of each generation: they
enable to obtain new candidate solutions based on
the ones present in the population. EAs usually
rely on two types of genetic operators: mutation
and crossover. The mutation operator takes one
solution as input and outputs a slightly modified
solution. The crossover operator recombines two
existing solutions (parents) to create two new solu-
tions (children) composed of rearranged parts of
their parents. Usually, the operators are applied
randomly until the population of solutions doubles
in size.

In the case of evolving patches to repair
faulty ATL transformations, the mutation oper-
ator applies a mutation on one patch. The con-
sidered mutations here are 1) adding an edit
operation, 2) removing an edit operation and or
3) modifying an edit operation. Fig. 5 presents an
example of two mutations applied on the patch of
Fig. 4. The first mutation replaces [edit-1] with
another type of edit operation (target of bind-
ing) and the second mutation only modifies one
parameter of [edit-2].

The crossover operator takes two patches and
outputs two new patches representing a recom-
bination of the inputs. In other words, it cuts
the two sequences of edit operations in several
parts (sub-sequences) and recombines them to
create new sequences. Representing solutions as
sequences is thus convenient when performing
crossover operations. In this work, we used a
single-point crossover operation, which separates
patches in two parts and exchanges their right
parts. Fig 6 represents a single point crossover on
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[edit-1] TargetOfBinding(  

 rule=Class2Table, object=out,   

old =col, new=key)  

[edit-2] OperationCall(  

 rule=Class2Table, object=out,                                        

old=collect, new=union)  

[edit-3] NavigationExpression(  

rule=MultiValuedClassAttribute2Column, 

object=foreignKey,  old=a.type, new=a.name)  

 

 

 

Fig. 5 Examples of two mutations of the patch of Fig. 4

[edit-1] [edit-2] [edit-3]

[edit-x] [edit-y]

[edit-1] [edit-2]

[edit-3][edit-x]

[edit-y]

cutpoint

Fig. 6 Examples of a single point crossover operation

the patch of Fig. 4 and another arbitrary patch of
two edit operations.

3.1.3 Fitness function

After the evolution phase, the fitness function is
invoked on each solution to compute their fitness
score. This score should reflect how good a solu-
tion is to solve the problem, and is used to rank
the solutions. This ranking is then used to select
the better half of the population, and discard the
solutions with poor fitness.

In our case, the objective is to generate
patches repairing a transformation. As explained
previously, a way to detect the presence of seman-
tic errors in ATL transformations is by relying on
input/output test cases. If a patch, when applied
to the faulty transformation, modifies the later
such that it produces the expected output models
for all input models, then the patched transfor-
mation is semantically correct with regard to the
provided behavior specification, and the patch is
thus considered optimal. In this case, the fitness
function could associate to each patch a score
corresponding to the number of passing test
cases. At each generation, the fitness function
would thus favor the patches passing the most
test cases, until finding one passing them all.

To sum up, we used EAs to automatically
evolve a population of patches over several gener-
ations until finding optimal ones. We discussed a
strategy to assess generated patches based on the
objective of repairing a transformation. However,
a key aspect of our automated repair approach [47]
was to find patches meeting several objectives.

3.2 Multi-Objective Evolutionary
Algorithm

Multi-objective optimization problems introduce
the idea that the fitness of candidate solutions
may be evaluated based on several objectives,
which may conflict with each other. Evolution-
ary algorithms are hence designed to find a set
of near-optimal solutions, called non-dominated
solutions (or Pareto front). These non-dominated
solutions provide a suitable compromise between
all objectives without degrading any of them.
Thus, non-dominated solutions are not compara-
ble and can be considered equally good. In this
paper, we use NSGA-II [13], a well-known fast
multi-objective genetic algorithm suitable for the
kind of problem we are solving [1].
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Repeat until end condition is reached (4)
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Fig. 7 NSGA-II Algorithm [13]

Figure 7 presents the four main steps of NSGA-
II. The first step in NSGA-II is to create randomly
a population P0 of N/2 solutions (Fig. 7 (1)),
with N being the size of the population. Then,
genetic operators are applied on the solutions
of the population P0 to create a child popula-
tion Q0 of the same size (2). Both populations
are then merged into an initial population of
size N . Then, the resulting population is sorted
into dominance fronts according to the dominance
principle (3a). Let us consider a set ofm objectives
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{Oi, i ∈ {1, 2, ...,m}} and their corresponding fit-
ness functions Oi(s) mapping a solution s to a
value reflecting how well the solution s meets the
objective Oi. A solution s1 dominates a solution s2
for a set of objectives {Oi} if ∀i, Oi(s1) ≥ Oi(s2)
and ∃j|Oj(s1) > Oj(s2). The first front includes
the non-dominated solutions. The second front
contains the solutions that are dominated only by
the solutions of the first front, and so on and so
forth. The fronts are included in the parent pop-
ulation P1 of the next generation following the
dominance order until the size of N/2 is reached.
If this size coincides with part of a front, the
solutions inside this front are sorted, to complete
the population, according to a crowding distance
which favors diversity (see Section 4) in the solu-
tions [13] (3b). This process is repeated (4) until
an optimal solution is found in the first front or
a stop criterion is reached, e.g., a number of iter-
ations or one or more objectives greater than a
certain threshold.

In our previous approach [47], we defined two
objectives to evaluate our generated patches. We
detail those objectives here:

3.2.1 Objective 1: Fixing as Many
Errors as Possible

The first objective of our algorithm targets the
main goal of the approach (i.e., repairing trans-
formations): it scores patches depending on their
capability to fix errors in the faulty transforma-
tions. As stated before, test cases are traditionally
used to estimate the utility of a patch: the more
test cases pass, the better the patch. In the case
of ATL transformations, test cases are pairs of
input/output models: provided with the input
models, a correct transformation should output
the expected models. To assess a patch p, first
the sequence of edit operations is applied on the
faulty transformation tr to obtain a patched trans-
formation trp. Then, the input model of the test
case is given to the patched transformation to
obtain an output model trp(ini). If the model pro-
duced by the transformation is equivalent to the
expected output outi, then the test case passes. If
the obtained model is different from the expected
one, the test fails.

For this objective, we compare the output
models generated by the patched transformation
with the expected ones provided by the test

cases to detect equivalency. We rely on EMFCom-
pare [6], a tool which, given two models, outputs
a list of differences between them, in a similar
manner than the differences presented in Fig. 3.
An optimal patch is a patch where EMFCompare
produces zero differences between the generated
and test models. We term these models equivalent.
When such a patch is found, the process stops.
Otherwise, as the number of differences grows, the
patch is considered less fit and it thus receives a
poor fitness score.

Failing test cases do not usually provide infor-
mation regarding why they fail, or how close they
were to pass. However, working with test cases
based on model comparison provides the oppor-
tunity to refine the fitness score by considering
the differences between the two output models.
The idea is that even if a patch does not correct
all the errors and does not pass all the tests, a
partial solution should lead to fewer discrepancies
between the output models and the expected ones
compared to a random solution.

Recalling the formalization from Section 2.5,
this objective is stated in Equation 4. Here, we
simply minimize the number of errors present in
the test suite for a patched transformation.

O1(p) =
∣∣errors(Ttrp)

∣∣ (4)

The patch presented in Fig. 4 is optimal
because it produces the expected output model: it
fixes the three differences indicated in Fig. 3. Non-
optimal patches could either (a) introduce new
differences, (b) do not change the output mod-
els or (c) correct some differences but not all.
Figure 8 shows an example of scores given to par-
tial patches inspired from the optimal patch of
Fig. 4. The unmodified faulty transformation (no
patch) produces an output model with three dif-
ferences. If we consider a patch composed of the
two first edit operations of Fig 4, it fixes differ-
ences 1 and 2, but not 3. A patch composed only
of the third operation [edit-3] fixes the difference 3
but not the differences 1 and 2. This patch can be
thus not considered as good as the previous one,
because it fixes one less difference. However, it is
still better than no patch at all. To properly assess
the fitness of patches and compare patches, it is
best to consider several examples to approximate
the expected behavior of a transformation.
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Fig. 8 Assessing patch fitness depending on model differ-
ences

3.2.2 Objective 2: Controlling the Size
of the Generated Patches

Bloating is a known issue in EAs where the solu-
tions considered during a run grow in size and
become larger than necessary to represent good
solutions. This is unpleasant because it slows down
the search by increasing manipulation and eval-
uation time, and find good solutions which are
unnecessary large and complex. In multi-objective
EAs, dedicating an objective to give better scores
to solutions of small size (Parsimony Pressure)
appeared to be effective to prevent bloating. Thus,
we use a second objective (Equation 5) which rep-
resents the number of operations in the patch.
This objective, which should be minimized, thus
favors patches of small size to avoid generating
candidate patches using too many edit operations.

O2(p) = |p| (5)

3.3 Approach Overview

Fig. 9 provides an overview of our approach to
model transformation repair. The approach takes
as input the model transformation under study
and the test suite of input/output models.

The approach contains a loop of five steps.
First, a new generation of patches is created by
the NSGA-II algorithm, as denoted by the label
“1” in Fig. 9. In the first iteration of the loop,
the patches are randomly created, without consid-
ering diversity. Otherwise, they are selected and
mutated based on the fitness scores assigned to
each patch.

In step 2, these patches are applied to the
model transformation to form a set of patched

NSGA-II
Algorithm

Create New
Generation of

Patches

Objectif 1: Errors Fixed
Objectif 2: Patch size
Objectif 3: Social Diversity

Crowding 
Distance
or Social 
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Transformation
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Calculate
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of Patches

Report
Final
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Approach 

4

1

2 3
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Fig. 9 An overview of our model transformation repair
approach.

transformations. These patched transformations
are tested against the input/output models in
step 3 to determine the fitness of the respective
patches, as scored by several objectives.

In step 4, it is determined whether the errors
in the transformation have been fixed. If errors
remain, then the best patches are selected in step
5 and another generation of patches is produced.
If no errors remain, then the final set of patches is
presented to the user for their inspection (step 6).

The parts about Social Diversity appearing in
bold font in Fig. 9 are extensions we added in this
paper and are addressed in the next section.

All steps of the approach for generating repair
patches as presented in Fig. 9 are fully automated.
The expert must then select and manually apply
the generated patches to perform the repair (after
step 6).

4 Social Diversity Repair
Approach

The approach presented in Section 3 faced dif-
ficulties to find good patches when the faulty
transformation presented 2 errors or more [47]. In
this section, we propose an extension of our previ-
ous approach which improves both its efficacy and
efficiency. We first identify and discuss two con-
vergence issues faced by the previous approach,
namely single fitness peak and fitness plateaus
in Section 4.1. Then, Section 4.2 introduces the
notion of social diversity and our hypothesis that
maintaining diversity in the population of our
approach could help with the aforementioned
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issues. Finally, we propose two ways to integrate
social diversity in our approach, i.e., in the form
of a third objective or as a crowding distance, in
Section 4.3.

4.1 Issues with Convergence

In our previous work [47], we used EAs to
repair transformations by relying on test cases.
We obtained good results for faulty transfor-
mations needing less than three edit operations
to be repaired (i.e., with few errors): beyond
this limit, our approach had trouble converging
towards patches addressing all errors. We have
analyzed in detail the process of our approach for
these cases, notably how candidate patches were
selected or discarded through the generations, to
understand why the approach was not effective
anymore. We found that partial patches (partial
solutions) which are essential to build optimal
patches were quickly discarded in the process,
because the fitness function fail to properly reflect
their value.

For a given problem, different fitness functions
can be designed to achieve the same objective.
Carefully designing the fitness function is essen-
tial and may impact both the approach’s efficiency
(time to converge toward an optimal solution)
and efficacy (whether it converges towards opti-
mal solution or not). Indeed, the fitness score
plays a central role in the search strategy of EAs,
because selecting which solutions to retain or dis-
card through the successive generations is what
is guiding the search by defining which parts of
the solution space are explored or not. Having to
rely on test cases to assess the fitness of repair
patches can lead to convergence issues of EA
repair approaches: we highlight two of them that
we target in this paper.

4.1.1 Single Fitness Peak

Groups of similar solutions may have similar fit-
ness scores. Because EAs filter and retain solutions
with the highest fitness, it may promote groups
of similar solutions if they have a high fitness
score. Mutations and crossovers, when applied on
these solutions, will mostly produce similar solu-
tions again, with high fitness as well. Such groups
may quickly overpower other solutions, leading to

a loss of diversity in the population and a prema-
ture convergence toward a local optima. This issue
is known as single fitness peak.

In the case where the fitness function relies
on test cases, EAs will tend to promote patches
correcting most of the errors. We can end up in
a situation where the population is mostly con-
stituted of similar patches correcting the same
errors and passing most of the test cases. However,
the other solutions that could target the remain-
ing errors are quickly discarded in favor of these
patches having a high score, and the necessary
material to cover all errors and pass all tests is
lost to their profits. Sustaining a certain level of
diversity within the population, i.e., ensuring that
individuals are scattered in different regions of the
search space, increases the chances to find good
solutions efficiently.

4.1.2 Fitness Plateaus

Using test cases to define fitness functions may
lead to another issue hindering convergence: par-
tial patches, i.e., correcting only a part of the
defect, are associated with bad fitness score
because test cases do not detect and reflect their
value. For instance, the patch presented in Fig. 4
modifies the illustrative faulty transformation to
pass the test case of Fig. 3. However, sub-patches
(or partial patches) such as {edit-1, edit-2} or
{edit-3}, even though they correct part of the
defect and are necessary to build the optimal
patch, are not enough to pass the test, as illus-
trated in Figure 10.

These patches are thus indistinguishable from
random patches which do not address at all the
defects of the transformation, and are discarded
early in the process. As a consequence, a lot of
candidate solutions (partial or bad) have the same
fitness score, thus creating fitness plateaus, i.e.,
large parts of the fitness landscape where all solu-
tions have the same fitness score even though they
are different from one another, and even though
some of them are partial solutions [14, 41]. This
makes some parts of the search space difficult
to explore, making it as good as random search
because the fitness scores are the same and thus
cannot properly guide the search.

In our previous approach, in cases where sev-
eral errors needed to be corrected in one transfor-
mation, many of them needed to be corrected at
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evaluation based on passing test cases

the same time to see an improvement in the out-
put models. If two errors disturb similar parts of
the output models, correcting only one of them
would not improve the output models, thus both
of them need to be corrected at the same time
to notice any improvement, hence hindering the
detection of partial solutions, as shown in Fig. 8.
[edit-1] and [edit-2] both modify the same binding
(lines 7-8) in the rule Class2Table. To notice an
improvement in the fitness scores, they both need
to be present in the patch, otherwise, the score is
as good as for no patch at all. Using model dif-
ferences rather that number of passing test cases
helps reduce fitness plateaus because it provides a
more fine-grained score. In Fig. 8, the scores of the
same patches as Fig. 10 creates a smaller plateau.

The more errors to correct in a transforma-
tion, the larger the size of the plateaus and the
less effective the search for an optimal patch. This
explains why our approach faced limitations with
transformations having several errors.

4.2 Social Semantic Diversity

Our hypothesis in this paper is that deliberately
maintaining diversity in the population would
not only help avoiding single fitness peak but
also reducing fitness plateaus, hence increasing
the effectiveness and efficiency of test-based EAs
approaches.

4.2.1 Definitions

The literature recognizes two types of diversity.
The first one, called genotypic or syntactic diver-
sity, distinguishes individuals based on their struc-
ture. In our case, syntactic diversity would pro-
mote patches of variable size and using dissimilar
edit operations.

The second type of diversity is called phe-
notypic or semantic. This time, it distinguishes
individuals based on their behaviors without con-
sidering their structure. Patches having similar
size and edit operations but modifying the trans-
formations such that they result in different out-
put models would then be considered semantically
diverse.

When targeting semantic errors in transfor-
mations, maintaining diversity in transformations’
behaviors is highly relevant. On the other hand,
understanding the impact of syntactic diversity on
the behavior of a program is quite complex [27].
We thus focus on semantic diversity, which is also
known to be more efficient to prevent single fitness
peak [5, 46].

4.2.2 Social Diversity for Repair
Patches

The aim of a social diversity measure is to assess a
candidate solution not only by examining the solu-
tion alone, but also by considering the solution as
a part of the population. When repairing transfor-
mations, a social diversity measure would consider
that the value of a patch should not be restricted
to the number of errors it corrects, but should also
consider its capability to address errors which are
infrequently covered by the other patches of the
population. In other words, it aims at assessing
the value a candidate patch brings to the entire
population.

Batot et. al [5] proposed a social diversity mea-
sure giving higher scores to solutions which pass
test cases frequently failed by the other solutions.
A solution passing numerous test cases that the
majority of the population also pass will receive a
lower score than a solution passing less test cases
but which are failed by a majority of the popula-
tion. They show that considering this measure to
score solutions allows to reduce single fitness peak
when using test cases conformance to guide the
search.
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In this paper, we propose a social diversity
measure relying, not on the number of passing test
cases, but on the differences between the obtained
output models and the expected ones. Because
these differences give information about what part
of the output models differ from what is expected,
we are able to estimate which parts of the output
models are impacted by each patch. We use this
information to give higher scores to patches mod-
ifying parts of the output models which are less
covered by the other patches of the population.

As discussed previously, correcting transfor-
mations with many errors increases the chances
to have several errors impacting the same parts
of the output models. These errors need to be
fixed at the same time to notice a difference in
the output model, and thus an improvement in
the fitness score. We think that bringing social
diversity in our fitness function will help main-
tain a population of patches addressing different
parts of the output models, thus increasing the
chances to escape fitness plateaus caused by errors
interactions and reducing premature convergence
of single fitness peak. Moreover, using a social
diversity measure as an objective would refine the
fitness score by adding a new level of granularity,
thus helping reduce the size of the plateaus.

4.3 Objective 3: Preserving
Semantic Diversity

We propose to add a third objective to address
the above convergence issues by focusing on pro-
moting the diversity in the population. It is a new
objective to the algorithm, as it was not found in
our earlier work [47].

Social diversity is calculated for patches by
determining the uniqueness of the errors they
address, compared to the rest of the population.
This is calculated by collecting the set of errors for
a patched transformation, and comparing this set
with the set of errors for the original (unpatched)
transformation. Then, we determine for each error
whether it is addressed by many patches, or a
smaller set of patches. The patches which address
a unique set of errors are then assigned a better
score.

First, following Section 2.5, let trp =
patch(tr, p). That is, we apply a patch p to the
original transformation tr to obtain trp. We then
create the sets of errors for each transformation:

errors(tr) and errors(trp) following Equation 2
and utilizing EMFCompare for the diff function.

A matrix D is constructed to record which
of the errors are addressed by each patch. The
columns represent the errors ei ∈ errors(tr), while
the rows are each candidate patch pj . Each entry
Dij is assigned as 0 or 1 depending on whether
the error ei is still present in errors(trpj

) or not
(Equation 6). That is, if a patch fixes an error,
then a 1 will appear. If the error is not fixed by a
patch, then a 0 appears4.

Dij =

{
0 if ei ∈ errors(trpj )

1 if ei /∈ errors(trpj )
(6)

Table 2 demonstrates a small example table. In
this example, there are three errors in the original
transformation’s test suite, and there are four can-
didate patches to assign a diversity score to. For
patch p0, when this patch is applied, then error
e0 is still present in the patch’s test suite, rep-
resented by a 0 in entry D00. However, patch p0
fixes errors e1 and e2 which is recorded with 1’s in
those entries.

e0 e1 e2 Patch Diversity
p0 0 1 1 0.50
p1 0 1 0 0.00
p2 1 1 0 0.75
p3 0 1 1 0.50

Error Fix Rate 1/4 4/4 2/4

Table 2 Calculation of diversity for patches.

The fix rate for each error is calculated at the
bottom of this table. This score represents in how
many patches the error was fixed. Precisely, the
score r is the sum of column i divided by the
number of patches in the table |p|, as defined in
Equation 7. For example, the fix rate for e0 is 1/4,
as it was fixed by only 1 out of four candidate
patches. On the other hand, e1 has a fix rate score
of 4/4 as it is fixed by each of the four patches.

r(ei) =
( |p|∑

j=0

Dij

)
/|p| (7)

4Note that there is a risk that a patch introduces new errors
not seen in the original test suite. This situation is not covered
in this objective, but instead by objective 2 (Section 3.2.2)
which penalizes patches that create many errors.
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Finally, we can calculate the diversity score
for each patch s(pi) as given by Equation 8. The
sum is taken of terms for each entry across the
row, where each of these terms is one minus the
fix rate of the error r(ei). This calculation penal-
izes patches who fix errors that other patches also
address, while rewarding uncommon fixes.

s(pi) =

|errors|∑
i=0

Dij ∗ (1− r(ei)) (8)

For an example, let us perform the calculation
for three patches p0, p1, and p2 from Table 2.
s(p0) = (0 ∗ (1− 1/4))+ (1 ∗ (1− 4/4))+ (1 ∗ (1− 2/4)) = 0.50

s(p1) = (0 ∗ (1− 1/4))+ (1 ∗ (1− 4/4))+ (0 ∗ (1− 2/4)) = 0.00

s(p2) = (1∗ (1−1/4))+(1∗ (1−4/4))+(0∗ (1−2/4)) = 0.75.

Here s(p2) = 0.75 is the highest score, reflect-
ing how patch p2 fixes the error e0 which is not
fixed by any other patch. The social diversity
objective O3 is then defined in Equation 9 where
we select for the highest score.

O3(p) = s(p) (9)

Crowding distance: In multi-objective EAs,
when the best solutions of a generation are
selected to start the next generation, it may be
necessary to select a sub-set of solutions from a
front which is, by definition, constituted of non
comparable solutions. In this case, a crowding dis-
tance is used to select solutions from a front while
favoring diversity. Given a set of patches from the
same front, the proposed semantic diversity score
can be reused as a crowding distance as well.

5 Experiments

This section reports on the evaluation of the
impact of our extended multi-objective approach
leveraging social diversity on correcting several
semantic errors. More specifically, we aim at
determining whether the proposed approach suc-
cessfully addresses the convergence issues detailed
earlier which hindered the generation of patches
correcting several errors. This evaluation does not
focus on the practicality of the approach in a
real-world context, but instead explores the ben-
efits of introducing mechanisms preserving social
diversity on the efficacy and efficiency on our
search-based repair approaches. We implemented

our approach in a tool called Automatix 5, and
perform our evaluation on four existing third-
party transformations, where two were examined
in our earlier work [47]: Class2Table, PNML2PN,
Bibtex2Docbook and UML2ER. We formulate the
following research questions:

RQ1: What is the impact of social diversity
on the effectiveness of the approach (i.e., finding
a patch correcting all the errors)?

RQ2:What is the impact of social diversity on
the efficiency of the approach (i.e., the convergence
time)?

RQ3: What is the impact of social diversity
on the type of errors which are corrected?

5.1 Dataset

We performed our evaluation on existing faulty
transformations from the literature. This was done
to aid comparisons to earlier works, and to reuse
faulty transformations and test models. In pre-
vious work [47], we utilized 13 faulty versions of
the Class2Rel transformation, and 18 faulty ver-
sions of the PNML2PN transformation. We reused
these 31 faulty transformations versions in these
experiments.

Then, we complete this dataset with transfor-
mations having three errors or more to assess the
impact of social diversity in these cases6. Guerra
et al. [20] introduced an approach for mutation
testing in ATL transformations. They note that
mutation testing process needs mutants coming
from distinct error categories.

We retrieved the UML2ER mutants and the
Bibtex2Docbook mutants from their paper. We
tested each mutant with the AnATLyzer tool [11],
which finds a wide range of syntactic errors
(including type errors) in ATL transformations
using static analysis. We only select mutants con-
taining semantic errors and we discarded the
mutants with syntactic errors. Out of the 800/354
mutants for Bibtex2Docbook/UML2ER studied
in their paper, 101/48 of them were syntacti-
cally correct but presented semantic discrepancies
with the original transformations. However, these
mutants only have one semantic error. We reused

5Available online at https://github.com/jgalasso/
RepairingATLSemanticErrors

6Experimental data is available at https://github.com/
jgalasso/faulty-ATL-transformations
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the approach presented in [48] to merge sev-
eral mutants with one error to obtain mutants
with several errors. We applied this approach on
UML2ER and Bibtex2Docbook mutants to create
mutants with multiple semantic errors.

To identify semantic error types in faulty
transformations, we determine how many atomic
modifications need to be performed to correct it:
the type of elements of the faulty transformation
that should be modified determine the seman-
tic error type. Types of semantic errors are thus
strongly related to the edit operations used in this
approach. We identified nine kinds of elements
that could be modified by an atomic edit opera-
tion: a) the types of input/output patterns, b) the
operation calls and their argument types, c) the
types of collections, d) the properties of input/out-
put object, and e) the bindings (missing bindings
and extra bindings). Table 3 presents the nine dif-
ferent classes of semantic errors, as well as their
occurrences in the faulty transformations used in
the experiments. We can see that each error type
is well represented in our dataset.

Table 3 Classes of semantic errors found in our experiment
ATL transformations.

Id Type of semantic errors Occurrences
TOP Wrong type of output pattern 32
TIP Wrong type of input pattern 13
OP Wrong operation call 22
TA Wrong type argument 19
CT Wrong collection type 9
BL Wrong property in binding LHS 29
BR Wrong property in binding RHS 30
MB Missing binding 29
EB Extra binding 21

Previous work [48] showed that multi-objective
genetic programming faces convergence issues to
repair faulty transformations having three or more
errors. To study the impact of social diversity on
higher numbers of errors, we thus created four
sets with respectively two to five mutants and
then merged them in each set to form four faulty
transformation mutants with two to five seman-
tic errors. We ran this creation process five times
for both UML2ER and Bibtex2Docbook mutants.
In the end, we acquired 20 faulty versions of each
transformation (5 * 4 mutants, each having 2 to 5
errors). Table 4 presents information characteriz-
ing the four transformations, such as the number

of rules and the composition of their input and
output metamodels.

For comparison, we have examined the size (in
terms of number of rules) of the 106 ATL trans-
formations from the ATL Zoo and recorded that
these transformations have an average of 11 rules,
with Q1 = 5, Q3 = 12 and the median being 9. The
four selected transformations of our evaluation
(with 8, 5, 9, and 8 rules) are thus representative
of transformations found in the ATL Zoo.

To generate patches for repairing faulty trans-
formations, we need test cases in the form of
correct input / output models. We opted to reused
the four test cases for Class2Rel and four test
cases for PNML2PN from prior research work [47].
Each test suite comprises the example input model
available in ATL Zoo, along with three additional
input models sourced from online tutorials. For
UML2ER and Bibtex2Docbook, we leveraged four
input models sourced from Guerra et al.’s muta-
tion testing approach. To obtain the expected
output models, we executed each input model
with the correct version of the transformation.
Manual verification ensured that each test suite
covered all rules associated with its respective
transformation.

5.2 Process

In this experiment, we aim at testing social
diversity with two configurations separately: as a
crowding distance and as an objective. We believe
this helps assess the impact of social diversity
on convergence from two different perspectives.
Using a social diversity measure as a crowding
distance will help hamper a loss of diversity with-
out altering the fitness function. Thus, it would
help understand how diversity in the population
impacts the resolution of problems whose fitness
landscapes contain large plateaus, and thus if
social diversity can help escape such plateaus.
Using a social diversity measure as an objective
would refine the fitness score by adding a new level
of granularity, thus helping reduce the size of the
plateaus.

We thus adapt our approach to run with
three different configurations: a) without social
diversity, b) with social diversity as a crowding
distance, and c) with social diversity as an objec-
tive. We run our approach on all transformation
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Table 4 Transformations used in the evaluation. Cells with two values (X/Y) represent values from the input and output
metamodel respectively.

# of Class2Table PNML2PN Bibtex2Docbook UML2ER
Lines of Code 136 91 232 79
Rules 8 5 9 8
Helpers 4 0 4 0
Classes 6/5 13/9 21/8 4/8
Attributes 3/1 4/3 9/2 87/2
Associations 11/8 28/20 21/9 7/10
Inheritance
associations

5/3 14/8 18/4 3/7

mutants (71 in total) with the three configurations
to compare the results.

Note that in our earlier work [47], we only
considered approach a), and applied it to two
transformations. In this paper, we have added two
transformations, so as our extension we are run-
ning the approach a) on the two new problems as
well and the social diversity approaches b) and c)
on all four problems.

We set a maximum number of generations to
50,000 as an arbitrary cut-off. If an optimal patch,
which fixes all the semantic errors, is found before
attaining the 50,000 generation, the program stops
and the number of generations needed to find the
patch is preserved. If no optimal patch is found
at the end of the 50,000 generations, we retain
the best patch found (i.e., the one with the best
fitness score) at the end of the last generation.
Because EAs are probabilistic approaches, we run
our process five times on each mutant and for each
configuration to be able to compute averages. We
thus run the 71 distinct mutants five times, for a
total of 355 runs for each configuration.

As an estimate of the time taken by our
approach, this timeout of 50,000 generations
was reached in about four hours. We note that
our implementation has not been optimized for
speed, and that further performance work will be
required to integrate our approach into a user’s
daily workflow.

To answer RQ1, we compare the effectiveness
of each configuration, i.e., the number of times a
run can find an optimal patch. To answer RQ2, we
compare the efficiency of each configuration, i.e.,
the number of generations necessary for a run. To
answer RQ3, we applied the obtained best patches
on the faulty transformations. We then manually
compared the patched transformation code with

their correct versions to count and classify the
remaining errors.

5.3 Results

This section will examine each of our three
research questions and discuss the results.

5.3.1 RQ1: What is the impact of social
diversity on the effectiveness of
the approach (i.e., finding a
patch correcting all the errors)?

The percentages of runs that find an optimal
patch for all four transformations are shown in
Fig 11. The results show an improvement in find-
ing optimal patches in configurations using social
diversity in three problems out of four: Class2Rel,
Bibtex2DocBook and UML2ER.

Class2Rel and PNML2PN mostly include
mutants with one or two errors. As we have
seen before, the patch generation approach with-
out social diversity already worked effectively in
these cases, which explains why social diversity
does not introduce huge improvements. Note that
among the transformations studied in our previous
work [47], Class2Rel represented the the largest
and more complex ones, which were the most diffi-
cult to handle with the approach without diversity.
Even if the improvement is not important, it is still
noticeable that injecting social diversity helped
increase the effectiveness of these difficult cases.

PNML2PN is the only case in which social
diversity does not increase the effectiveness of the
initial approach. However, the percentages are so
close that they are not really significant: we cannot
conclude that social diversity reduces the effective-
ness. PNML2PN is less complex than Class2Rel
and contains few mutants with more than two
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Fig. 11 Percentage of runs finding an optimal patch (RQ1)

errors. The configuration without social diversity
already gives very good results on this case, where
over 80% of the runs found an optimal patch.
Thus, social diversity does not bring improvement
in these easy cases.

For Bibtex2DocBook and UML2ER, we noticed
sizable improvements for finding optimal patches
when injecting social diversity in the process.
In both cases, social diversity as an objective
yields better results than as a crowding distance.
Because these two cases mostly contain mutants
with three errors or more, we expect their fitness
landscape to contain more plateaus than the ones
of Class2Rel and PNML2PN.

The results of social diversity as a crowd-
ing distance suggests that diversity indeed helps
escape these plateaus in certain cases, improv-
ing the effectiveness from 34% to 44% for Bib-
tex2DocBook, and from 57% to 70% for UML2ER.
But considering social diversity as an objective
(which should reduce the size of plateaus) provides
even better results, attaining an effectiveness of
83% and 85% for Bibtex2DocBook and UML2ER,
respectively.

We can conclude that using social diversity
both as crowding distance and as objective
improves the correction of larger number of
errors at the same time.

5.3.2 RQ2: What is the impact of
social diversity on the efficiency
of the approach (i.e., the
convergence time)?

Figure. 12 shows the average number of gener-
ations to obtain a solution for the four studied
transformations, and depending on the three con-
figurations. The median is indicated with a hori-
zontal bar, which in the case of Bibtex2Docbook is
located at the maximum iteration limit.

Overall, the average number of generations
required to find a good patch when injecting
social diversity in the process is decreased for all
four transformations. In RQ1, social diversity did
not substantially increase the effectiveness of the
approach for Class2Rel and PNML2PN, which
represent transformations with a smaller num-
ber of errors. However, Fig. 12 shows that social
diversity improves its efficiency. Here again, social
diversity as an objective give better results than as
a crowding distance for Class2Rel. For PNML2PN,
social diversity as an objective or as crowding dis-
tance provided similar results, but they are both
better than the initial configuration without social
diversity.

For Bibtex2Docbook and UML2ER, even
though the convergence time is better with both
configurations including a social diversity mea-
sure, the one adding social diversity as an objec-
tive brings a higher improvement than the one
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using social diversity as a crowding distance. In
fact, for these transformations with many errors,
injecting social diversity through the crowding dis-
tance is more effective than the initial approach
but the differences are not that important. This
suggests that injecting diversity without alter-
ing the fitness function increases the chances to
find optimal patches (see RQ1), but the explo-
ration is still difficult and the convergence takes
time. Reducing the plateaus’ size by introducing
the diversity measure as an additional objective,
however, seems to ease the exploration process,
leading to a fastest convergence and a better
effectiveness.

Thus, we conclude that using a social diver-
sity measure helps the approach find the
optimal solutions faster.

5.3.3 RQ3: What is the impact of
social diversity on the type of
errors which are corrected?

To answer RQ3, we first retrieve the number and
type of errors present in all mutants. For each type
of semantic error, we computed their occurrences
in the studied mutants. Since we run each mutant
five times for each configuration in our approach,
we multiply the total number of errors five times to
correctly calculate the ratio of corrected/remain-
ing errors. Finally, we counted the total number
of errors that are corrected/not corrected by the
best patch found at each run. We repeated this
process for the three configurations. At the end,
we obtained, for each error type, the total number

of their occurrences in the mutants and the per-
centage of corrected errors for each configuration,
as shown in Fig. 13.
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Fig. 13 Percentage of corrected/remained errors for each
type of semantic error in faulty transformations, without
social diversity (WSD), with social diversity as crowding
distance (CD) and with social diversity as an objective
(Obj).

We can see that injecting social diversity,
both as a crowding distance and as an
objective, increases the correction rate for
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all types of errors. For example, the correc-
tion rate of semantic errors related to a wrong
type argument (TA) increased from 83.15% (with-
out SD) to 90.53% (social diversity as a crowding
distance) and to 94.74% (social diversity as objec-
tive). Errors of type EB, OP and TIP are difficult
to repair without social diversity: more than 50%
of them remain after applying the best patch.
Considering a social diversity measure in the fit-
ness function allows to decrease this percentage
to 20% or less for these three cases. Here again,
social diversity as an objective provides better
improvement than social diversity as a crowding
distance.

Even if social diversity improves the correc-
tion rates of all types of errors, some of them
remain more difficult to fix than other. Those
include the three types which were the most dif-
ficult to handle without social diversity (EB, OP,
TIP). We performed a behavior analysis of our
automated approach, especially on the candidate
patches which are discarded or kept at each itera-
tion, to understand why some errors remain more
difficult to correct than the others. We observed
that combinations of these types of errors are more
likely to cause interaction, i.e., impact the same
parts of the output models and need to be fixed at
the same time to see a improvement in the fitness
score.

This evaluation shows that social diversity can
help overcome the limitations caused by fitness
plateaus, which occur when trying to find com-
plex patches (i.e., correcting several errors) while
guiding the search with test cases. We showed
that in our case, injecting social diversity in the
population helps improve the effectiveness of the
approach for repairing more than two errors. The
convergence time is also reduced but remains high,
suggesting that the exploration is still difficult.
We also showed that refining the fitness func-
tion by adding social diversity as an objective
improve both the effectiveness and the efficiency
of the approach. It creates a smoother fitness
landscape, more suited for the exploration pro-
cess. Finally, this evaluation highlighted that some
types of errors are more difficult to repair than
other, because they are more likely to form fitness
plateaus when combined with each other.

6 Discussion

This section will briefly discuss the benefits and
limitations of our approach, and the threats to
validity for the current work.

6.1 Approach Benefits

Our approach aims to improve the (semi-) auto-
matic repair of model transformations primarily in
terms of convergence. The innovation is to use the
metric of social diversity (Section 4) which ensures
that the patches produced are diverse throughout
multiple evolutionary generations.

This social diversity metric thus assists with
fighting fitness plateaus and peaks in the pro-
duced patches. Our results show that this leads
to finding optimal solutions faster than our ear-
lier work. As well, the retention of the patch
size objective means that patches are evolved to
be minimal, providing performance enhancements
and the exact changes that must be applied to the
transformation.

Our approach is also applicable to a broad
range of ATL transformations. In particular, the
fitness metrics defined here, the patch represen-
tation, and our use of a diversity score can be
reused for other genetic approaches on ATL trans-
formations. As the edit operations (Sec. 3.1) have
been defined in prior work as primitive ATL edit
operations [12, 47], they are also broadly appli-
cable in search-based ATL approaches. To apply
our approach to a new ATL transformation, the
user must only produce an appropriate test suite
of input and output models, possibly assisted from
techniques from the literature [20].

6.2 Approach Limitations

A limitation of our approach is that we are fixing
ATL transformation rules only, not the helpers.
This will require the definition of further edit
operations that can modify helpers in ATL trans-
formations. We also do not consider all constructs
of OCL, restricting the range of errors that our
approach can fix.

Our current set of mutation operators is at
the level of modifying ATL primitives, based on
previous literature. The efficiency of the approach
would be improved by also taking the meta-models
of the transformation into account. For exam-
ple, Burdusel et al. define multiplicity-preserving
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search operators (MPSOs) which combine multi-
ple edit operations [7]. When these MPSOs are
applied instead of the primitive edit operations,
the resulting model will always conform to the
meta-model, ensuring that only correct solutions
are produced.

Another limitation is that due to the evolu-
tionary algorithm-based nature of our approach, it
is not possible to ensure that the optimal patches
will be found. This is due to the probabilistic
nature of evolutionary algorithms which may take
a long time to search throughout the solution
space to find the optimal solution. This limita-
tion can be seen in our results where the approach
occasionally cannot find the optimal solution even
after tens of thousands of generations.

6.3 Threats to Validity

There are some threats to validity in our approach
as follows.

6.3.1 Internal Validity

The main threat to validity is the input/output
model examples to evaluate the behavior of a
transformation, which may not cover all types of
semantic errors in a transformation. This causes
the incorrect transformations to produce expected
output models. We used four different input/out-
put examples to overcome this threat.

The semantic errors in mutants used in the
evaluation originated from mutations and not
actually introduced by developers. We used this
external data set since it is independent from our
project and it covers a large spectrum of semantic
errors. However, we also note that the mutations
we have selected do not cover possible errors in all
possible constructs of OCL. Thus, our approach
will not be able to repair these transformations.

Another threat to validity is the use of specific
model transformations originating from the ATL
zoo and other model transformation verification
papers. These transformations may not be fully
representative with real-world transformations in
terms of size and complexity. However, we believe
that the set of four model transformations used
in our experiments is sufficiently representative to
demonstrate the benefits of our approach. We also
aimed to reuse the transformations and test suites
used in earlier transformation verification work to
both aid comparisons between approaches, and to

leverage the existence of the transformations, their
faulty versions, and the test suites.

6.3.2 External Validity

A threat to validity of our work is that we tested
our approach only with the Atlas Transformation
Language (ATL) but we believe that our approach
can be generalized with other transformation lan-
guages using specific version of edit operations
related to the targeted language.

We have also only tested our approach on
transformations containing up to five errors. This
number was selected to improve upon the results
of our earlier work [47], which suffered poor per-
formance after three semantic errors. While we
claim our approach can effectively find patches
for a transformation with five errors, this is not
a hard limit. We expect that adding more errors
in the transformation would increase the difficulty
for the genetic algorithm to find the correct patch.
Our approach would thus require more time and
computation to fix an increasing number of errors.

7 Related Work

The work presented in this paper intersects three
research areas: model repair, repairing transforma-
tion programs, and social diversity. For a broader
examination of model transformation testing and
debugging, we point the reader towards the recent
survey of Troya et al. [44].

7.1 Model Repair

Ben Fadhel et al. [15] use a search-based algorithm
to express high-level model changes in terms of
refactorings. Their approach takes a list of possi-
ble refactorings, an initial model and its revised
version, and searches for a sequence of refactor-
ings characterizing the changes made to obtain
the revised model. After applying the sequence
of refactorings on the initial model, the obtained
model should be as close as possible as the
provided revised model. Their approach finds a
sequence of edit operations based on model differ-
ences but our method applies on transformations.

Puissant et al. [36] proposed an approach
to resolve model inconsistencies. They use auto-
mated planning to generate one or more resolution
plans to repair one error. A change-preserving
model repair approach is proposed by Taentzer et
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al. [42], based on the theory of graph transfor-
mation. They consider the edit operations history
to identify the inconsistent changes in a model,
and complete them with number of possible repair
actions to restore consistency. A rule-based repair
of EMF models with user intervention is pro-
posed by Nassar et al. [32]. Their approach repairs
models in a specific context but the efficiency of
evolutionary algorithms, in which we used in our
approach, is independent from the context. In [25],
Kretschmer et al. present an automated approach
to explore the space of possible repair values using
validation trees to repair model inconsistencies. In
comparison, in our approach we explore the space
of possible patches using evolutionary algorithms,
which is based on random choices and genetic
operators, and leads to more diverse solutions.
Bariga et al. [3] presented an automatic model
repair method which uses reinforcement learning,
in which used Markov Decision Process (MDP)
and Q-learning algorithm, to repair broken mod-
els. Their goal is to generate sequences of edit
operations to apply on the whole model, and not
just specific errors.

7.2 Transformation Error Detection
and Repair

Oakes et al. [33] presented an approach to stati-
cally verify the declarative subset of ATL model
transformations. They translated the ATL trans-
formation into DSLTrans using a higher-order
transformation. Due to the limited expressive-
ness of DSLTrans, a symbolic-execution approach
can then produce representations of all possi-
ble executions to the transformation. The trans-
formation is verified through the matching of
pre-/post-condition contracts on these representa-
tions, which resemble the visual contract language
of Guerra et al. [19]. This produces evidence that
the transformation is working correctly.

Similar work by Vallecillo et al. describes the
definition of Tracts to be specified on model trans-
formations [45]. Tracts define sets of constraints
i) on the source and target meta-models, and
ii) on the source-target constraints. Tracts also
define a test suite, a collection of source mod-
els satisfying the source constraints. A TractsTool
can then automatically transform source models
into the target meta-model, and verify that the
source/target model pairs satisfy the constraints.

While these partial oracle approaches would
reduce the size of the test suite to be created
and maintained, it is unclear how to integrate
these approaches with our own. This is due to
the genetic algorithm underlying our approach,
which requires a granular fitness function to guide
the patches towards the correct ones. In the
current approach, this fitness function is based
on the number of model differences between
the transformed model and the oracle model
(Section 3.2.1). We thus currently require full
models in the test suite to provide a fitness value.
Future work will determine if partial oracles are
sufficiently sensitive enough to guide the search.

Troya et al. [43] proposed a Spectrum-Based
Fault Localization (SBFL) technique, which uses
test cases to find the probability of transforma-
tion rules being faulty. This symbolic execution
approach was then combined with the SBFL tech-
nique in [34]. These works focus on detecting
faulty rules in transformation programs and do
not propose rule patches or repair the faulty rules.

Burgueño et al. [8] presented a static approach
to check the correctness of transformation rules
using matching functions, which used metamodel
footprints to automatically generate the align-
ments between implementations and specifica-
tions. Cuadrado et al. [10] presented a combined
method using a static analyzer and a constraint
solver to detect errors in model transformations.
They produced a witness model using constraint
solving to make the transformation to execute
the erroneous statement. These approaches could
find the faulty rules in model transformation, but
they cannot fix transformation errors. Cuadrado
et al. [12] proposed quick fixes to repair syntac-
tic errors in ATL transformations using a static
analyzer proposed in [10]. Their approach needs
a user interaction to select a suitable repair,
while our approach generates a candidate patch
automatically. In a previous work [48], we relied
on the static analyzer of [10] to automatically
generate patches addressing syntactic errors in
transformation programs.

Kessentini et al. [22] have implemented an
evolutionary algorithm to modify a model trans-
formation to conform to new versions of the
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metamodels. Their approach aims to adapt mod-
els to the new version of metamodels syntacti-
cally but not semantically. Rodriguez et al. pro-
posed the Model Transformation TEst Specifica-
tion (MoTES) approach to repair transformations
for rule-based languages [38]. Their approach is
based on a metric-based test oracle and they used
input/output models to mark input/output pat-
tern relationships as true positive, true negative,
false positive or false negative. In our approach, we
used input/output models as a measure of diver-
sity to choose candidate patches which are less
similar to the others for next generation.

In a broader sense of improving transforma-
tions, Alkhazi et al. consider optimizing transfor-
mations to improve qualities such as rule complex-
ity, cohesion, and coupling [2]. A genetic algorithm
is used, with operators such as moving rules
between modules. While similar to our approach,
we are instead concerned with the semantic cor-
rectness of rule elements, not rule refactoring to
improve quality.

7.3 Social Diversity

Soto [40] proposed a study of patch diversity
as a means to increase the quality of gener-
ated patches through patch consolidation. Their
approach focuses on improving patch quality for
general program repair. Ding et al. [14] used a
search-based technique for program repair, which
is successful when it produces short repairs. The
fitness function relies on test cases, which are not
enough to determine partially correct solutions
and lead to a fitness plateaus. They proposed a
novel fitness function using learned invariants over
intermediate behavior. Their approach improved
semantic diversity and fitness but not repair per-
formance. This approach is similar to ours in
the sense that they used the semantic diver-
sity to optimize the fitness function. However,
They used invariant-based semantic diversity but
we used social diversity in different way. Their
method applies on programming languages but
ours applies on transformation languages.

Vanneschi et al. [46] divided semantic-aware
methods into three categories. Diversity methods,
that work with diversity, mostly at the popula-
tion level [23]. Indirect semantic methods, that act
on the syntax of the individuals and depend on
criteria to indirectly promote a semantic behavior

[35] [17] [18] [24] . Direct semantic methods, that
act directly on the semantics of the individuals
by using precise genetic operators [30]. All these
approaches improve the power of genetic program-
ming. Batot et al. [5] proposed injecting social
diversity in multi-objective genetic programming
to learn model well-formedness rules from exam-
ples and tackle the bloating and single fitness
peak limitations. They presented an improve-
ment in population’s social diversity that was
performed during the evolutionary computation
and lead to efficient search strategy and con-
vergence. They implemented the social semantic
diversity in NSGA-II algorithm both as crowd-
ing distance and as an objective. The difference
with our work are that we aim at fixing semantic
errors in ATL transformations not learning model
well-formedness rules from examples. Interest-
ingly, they obtained better results when injecting
social diversity in the crowding distance than as
an additional objective. This could be explained
by the fact that we target two different issues: they
try to limit the loss of diversity to prevent single
fitness peak while we try to overcome the issues
caused by fitness plateaus.

8 Conclusion and Future
Work

In this paper, we presented a novel automated
approach to correct many semantic errors in model
transformations. This approach is based on evo-
lutionary algorithms and test cases in the form of
input/output models to find suitable patches to
fix the transformations.

We discuss two limitations of EAs, namely
single fitness peak and fitness plateaus, which
are known to hinder the convergence of EAs
approaches in this case and which make it difficult
to find patches fixing three errors or more. To over-
come these limitations, our approach is formulated
as a multi-objective optimization problem and we
use several objectives to guide the search. We ded-
icate an objective which gives a score based on the
notion of social diversity that we defined on model
differences.

We present our experiments to assess the
impact of our approach, and especially on inject-
ing social diversity in the process, on the effec-
tiveness and the efficiency of repair approaches
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based on EAs and test cases. Our results showed
that injecting our social diversity measure in the
search process improves both the effectiveness and
the efficiency, and enables to find patches for
transformations containing up to five errors.

One aspect of our future work is to combine the
social diversity measure with objectives focusing
on other quality attributes, such as transformation
execution time or reducing overall complexity [1,
50]. To improve the convergence of the approach,
it may also be possible to better target faulty
rules in the transformation through a spectrum-
based fault localization (SBFL) approach [31, 34,
43]. That is, SBFL would produce a ranking of
which rules are likely to be faulty. Then, our
EA approach could prioritize patches which repair
those rules.

Another approach to improve the efficiency of
our approach is to ‘slice’ the transformation to
just the rules which have an observable effect on
the output model [9]. This would restrict patch
creation to only relevant rules, improving the
convergence of our genetic algorithm approach.
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